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ABSTRACT

We present a new method to obtain the Euler number of a domain based on the tangent counts of concentric
spheres in R3 (or circles in R2), with respect to the center O, that sweeps the domain. This method is derived
from the Poincaré-Hopf Theorem, when the index of critical points of the square of the distance function with
respect to the origin O is considered.
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INTRODUCTION

The Euler number describes the topology of the
surfaces of a structure of interest and its practical value
of obtaining, for example, the number of trabeculae in
bone, the number of glomerular capillaries in kidney,
or the alveolar number in lung-architecture, has been
demonstrated.

Hadwiger (1957) gave an inductive definition of
the Euler characteristic which has suggested several
methods for deriving the Euler number from close
parallel flat sections; see for instance De Hoff (1987),
Gundersen et al. (1993), Ohser et al. (1996) or Rataj
(2004). In this case, the principle used to obtain the
Euler number of an n-dimensional domain in Rn (n =
2 or 3) is based on what happens in an (n − 1)-
dimensional plane that sweeps through the domain.
Some of the methods obtained from this principle
and derived from the Hadwiger definition, can also
be proved from the classical Poincaré-Hopf Theorem,
when the index of critical points of a family of height
functions are considered (Gual-Arnau et al., 2001).

It follows that, for any vector u in Rn (n = 2 or 3),
the Euler number of a domain is obtained from the
tangent counts of the domain and a perpendicular plane
to u (or line in R2), that sweeps the domain. This
method is isotropic in the sense that, although the
tangent events depend on the direction u, the final
result (Euler number) does not depend on u.

In this paper we present an alternative method to
obtain the Euler number of a domain based on the
tangent counts of concentric spheres in R3 (or circles
in R2) that sweep the domain. The tangent counts will
depend on the position of the center O of the spheres
(or circles) but the final result will be the Euler number
for a general position of the center O. This method
is then based on what happens in a sphere in R3 (or

circle in R2) that sweeps through the domain and it is
obtained from the Poincaré-Hopf Theorem, when the
index of critical points of the square of the distance
function with respect to an origin O is considered. In
fact, Chapter 6 of Milnor (1969) is deserved to show
that the square distance from a chosen point, restricted
to a smooth submanifold in Rn, is indeed a function
with no degenerate critical points (Morse function), for
almost all chosen points for the origin O. For instance,
if the domain is bounded by a sphere, the square
distance restricted to the sphere is a Morse function for
all reference points, except when the reference point O
is the center of the sphere.

This method may be of interest in images with a
prominent reference point: e.g., the nucleolus of a cell
or the planet earth when counting celestial objects like
stars; and in images which include anisotropic particles
that have approximately parallel sides (plant fibers,
fibrous minerals,...).

In the first part of the paper we give the
stereological versions of the principle for 3-
dimensional domains in R3, 2-dimensional domains
in R2 and domains with boundary in a surface
S ⊂ R3. In the second part we give the detailed
mathematical justifications and we relate the Euler-
Poincaré characteristic with curvatures of the domain
and the concentric spheres in R3 (or circles in R2).

STEREOLOGICAL FORMULAE

In this section we give an elementary version of
the Euler-Poincaré characteristic of closed orientable
smooth surfaces S = ∂D in R3, of bounded domains
D∈R2, and of domains with boundary in an orientable
smooth surface S in R3.
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The Euler-Poincaré characteristic for domains in
R2 and R3 has been studied in several stereological
applications (see, for instance, Gundersen et al., 1993).
The principle used to obtain the Euler number of an
n-dimensional domain in Rn (n = 2 or 3), is based
on what happens in an (n− 1)-dimensional plane that
sweeps through the domain. Here we consider a new
principle based on what happens in a sphere S2(λ ) (or
circle S1(λ ) in R2) that sweeps through the domain
when the radius λ varies.

Both principles can be derived from a result of
Morse (1929) that we simplify for surfaces in R3 and
domains in R2. In the next section we give a more
detailed mathematical justification.

CLOSED SURFACES IN R3

Let f : S −→ R be a smooth function defined on
a closed orientable smooth surface. We say that x ∈ S
is a critical point if ∇ fx : TxS−→ R vanishes for every
v ∈ TxS. A critical point x ∈ S is non degenerated if
the Hessian of f at x, (∇2 f )x : TxS× TxS −→ R, is
a non degenerated bilinear form, i.e., for every non
zero vector v ∈ TxS, there exists a vector w ∈ TxS such
that (∇2 f )x(v,w) 6= 0. A function f is called a Morse
function if all its critical points are non-degenerated
(Bruce et al., 1984).

Theorem 1. (Morse) Let f : S → R be a
differentiable Morse function on a closed orientable
two-dimensional surface, then

χ(S) = ∑
x∈Σ( f )

Indx( f ) , (1)

where Σ( f ) denotes the set of singular points of f and
the index, Indx( f ), is given by +1 when x is a local
extreme of f , or −1 when x is a saddle point (Morse,
1929).

That is,
χ(S) = M− s+m , (2)

where M,m and s denote the number of maximum,
minimum and saddle, respectively, of f .

Now, we apply the above results to a particular
function: the square of the distance function.

We define the square of the distance function to a
generic coordinate origin O ∈ R3 as

d :R3 −→ R
x−→ d(x) = 〈x,x〉= ||x||2 .

(3)

For almost all O ∈ R3 (all but a set of measure
0), the restriction of d to S, d|S, is a Morse function

(Milnor, 1969). Now we will apply Theorem 1 to the
square of the distance function.

The level sets are πλ 2 = d−1(λ 2) = {x ∈
R3 / ||x||2 = λ 2}= S2(λ ).

When we restrict d to S, the critical points x ∈
Σ(d|S) are those where the tangent plane to S at x
coincides with the tangent plane to πλ 2 at x; i.e., TxS =
TxS2(λ ); then we give a ’stereological’ interpretation
of the local extreme (maximum and minimum) and
saddle points of d.

Let D be a domain in R3 such that ∂D = S; then,
the critical points of d|S, (x∈ Σ(d|S)), can be classified
as follows: x ∈ Σ(d|S)) is a point of type ”Island” if
d−1(d(x)) = S2(λ ) is locally contained in R3 rD, (x
is a local extreme (maximum) of d|S); x ∈ Σ(d|S)) is a
point of type ”Hole” if d−1(d(x)) is locally contained
in D (x is a local extreme (minimum) of d|S); and
x ∈ Σ(d|S)) is a point of type ”Bridge” if there exist
points of S in the interior and in the exterior of S2(λ )
where S2(λ ) = d−1(d(x)), (x is a saddle point of d|S),
(see Fig. 1).

Fig. 1. Images that we see in the sweeping spheres
S2(λ )∩ S, where S is a fixed torus and the growing
spheres S2(λ ) have a fixed center O. Depending on the
type of critical point we have Islands or Holes (blue
points) and Bridges (red points). The Euler number
of the torus is 0. Note that, although S is fixed, as
the radius of S2(λ ) increases, a change of scale and
orientation of S (torus) appears in the images to get a
better view of the critical (tangent) point.
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Let S = ∂D ⊂ R3 be an orientable smooth surface
in R3 and let O ∈R3 such that d|S is a Morse function.
When λ varies on R, the different spheres πλ 2 can be
considered as a “sweeping” sphere S2(λ ) (centered at
O) in R3. Then, Theorem 1, with the interpretation of
local extrema and saddle points of d|S as Islands, Holes
and Bridges, can be expressed as:

χ(S) = 2χ(D) = I2 +H2−B2 , (4)

where I2,H2,B2 denote the number of islands, holes
and bridges observed in the “sweeping” sphere S2(λ ),
which contribute to the sum ∑x∈Σ(d|S) Indx(d|S).

Moreover, when O ∈ S, O is a minimum of d, and

χ(S) = 2χ(D) = 1+ I2 +H2−B2 . (5)

Note that the tangent counts I2,H2,B2 may depend
on the position of the center O; however the final result
of (I2 +H2−B2) is always 2χ(D) (see Fig. 2). In fact,
when O is far from the domain D the tangent counts
I2,H2,B2 are similar to that obtained when sweeping
planes are considered.

Fig. 2. The surface S is the same as in Fig. 1 and the
growing spheres S2(λ ) have a fixed origin O different
to that considered in Fig. 1. Therefore, we obtain
different values of the critical points, because they
depend on the position of the center of the spheres, O.
Blue points are Islands and red points are Bridges. The
Euler number of the torus is 0.

DOMAINS IN R2

Let D ⊂ R2 be a domain in R2 whose boundary is
a curve ∂D. In this case, we can not apply Theorem 1
because D is a surface with a boundary. As explained in
the Mathematical foundations section, the generalized
result of Theorem 1 for domains in R2 is as follows:

Theorem 2. Let D ⊂ R2 be a domain with
boundary and let f : D→ R be a Morse function such
that f has no critical points on ∂D and the restriction
f |∂D : ∂D→ R is also a Morse function. Then,

χ(D) = ∑
x∈Σ( f )

Indx( f )+
1
2 ∑

y∈Σ( f |∂D)

Indy( f ) , (6)

where the index Indx( f ) is defined as in Eq. 1 and
the index Indx( f |∂D) is defined as follows: if the level
set f−1( f (y)) is locally contained in R2 r D then
Indy( f |∂D) = +1 and if the level set f−1( f (y)) is
locally contained in D then Indy( f |∂D) =−1.

The square of the distance function to a generic
coordinate origin O ∈ R2 is

d :R2 −→ R
x−→ d(x) = 〈x,x〉= ||x||2 .

(7)

The level curves πλ 2 are in this case circles S1(λ )
centered at O ∈ R2.

To satisfy Theorem 2 we suppose that O ∈ R2 r
∂D; then, the square of the distance function d|D has
only a critical point O ∈ D; and we also suppose that
the restriction of the square of the distance function
d|∂D is a Morse function; then, from Eq. 6,

χ(D) = δ0(D)+
1
2 ∑

y∈Σ(d|∂D)

Indy(d|∂D) , (8)

where

δ0(D) =

{
1, if O ∈ D ,

0, if O /∈ D ,
(9)

and a critical point y ∈ Σ(d|∂D) is a point of type
”Island” if d−1(d(y)) = S1(λ ) is locally contained in
R2rD; and y ∈ Σ(d|∂D)) is a point of type ”Bridge” if
d−1(d(y)) is locally contained in D (see Fig. 3).

Therefore, when λ varies on R, the different circles
S1(λ ) can be considered as “sweeping” circles in R2,
and Eq. 6 can be expressed as:

χ(D) = δ0(D)+
1
2
(I1−B1) , (10)

where I1 and B1 denote the number of islands and
bridges observed in the “sweeping” circle S1(λ ).
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a) O /∈ D. b) O ∈ D.

Fig. 3. Different values of the critical points,
depending on the position of the center of the growing
circles, O. Blue points are Islands and red points are
Bridges. The Euler number of the domain D is 0.

Note that when the point O /∈ D, Eq. 10 can be
expressed as:

χ(D) =
1
2
(I1−B1) , (11)

which, when O is far from D, is similar to that
obtained in Gundersen et al. (1993), where I1 and B1
denote the number of islands and bridges observed in
a ”sweeping” line.

SURFACES WITH BOUNDARY IN R3

Let D ⊂ S ⊂ R3 be a domain with boundary in an
orientable smooth surface S in R3 and let O ∈ R3 such
that Eq. 14 is satisfied in this case. When λ varies on
R+, the different spheres S2(λ ) can be considered as a
sweeping sphere in R3, and

χ(D) = (I2−B2)+
1
2
(I1−B1) , (12)

where I2, B2 are defined as in Eq. 4 and I1, B1
denote the number of islands and bridges, respectively,
observed in the level curves S2(λ )∩ S. In Fig. 4 we
consider a domain D in a cylinder, whose boundary
is given by two circles (black curves), and we show
two critical points: an Island where the level curve
S ∩ S2(λ ) (red curve) is locally contained in S r D,
and a Bridge point, where the level curve is locally
contained in D.

MATHEMATICAL FOUNDATIONS

The classical Poincaré-Hopf Theorem states that
if S is a closed orientable smooth surface and v is a
smooth vector field on S with isolated zeros, then

χ(S) = ∑
v(x)=0

Indx(v) ,

Fig. 4. Partial view of the domain D. The boundary ∂D
is given by the black curves (circles). The red curves
correspond to S∩S2(λ ).

where χ(S) is the Euler-Poincaré characteristic of S
and the index, Indx(v), is just the local degree of v at
x; that is, the degree of the map u : S −→ S2 given by
u(z) = v(z)/|v(z)|. As an immediate consequence, we
see that if f : S → R is a Morse function (that is, a
function with non-degenerate critical points), then

χ(S) = ∑
x∈Σ( f )

Indx( f ) , (13)

where Σ( f ) denotes the set of singular points of f and
the index, Indx( f ), is given by +1 when x is a local
extreme of f , or −1 when x is a saddle point (Morse,
1929).

Now, we consider a generalization of the classical
Poincaré-Hopf Theorem which can be applied
domains with boundary in an orientable smooth
surface in R3 and, in particular, to closed domains in
R2 (Gual-Arnau et al., 2001).

Let D ⊂ R3 be a compact orientable smooth
surface with boundary and let f : D→ R be a Morse
function such that f has no critical points on ∂D
and the restriction f |∂D : ∂D → R is also a Morse
function. Then, the Poincaré-Hopf Theorem (Morse,
1929), states

χ(D) = ∑
x∈Σ( f )

Indx( f )+
1
2 ∑

y∈Σ( f |∂D)

Indy( f ) , (14)

where the index Indx( f ) is defined as in Eq. 1 and
the index Indx( f |∂D) is defined as follows: if the
level set f−1( f (y)) is not locally contained in D then
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Indy( f |∂D) = +1 and if the level set f−1( f (y)) is
locally contained in D then Indy( f |∂D) =−1.

In the next section we will consider a particular
function f , the square of the distance function, and we
will interpret Eq. 1 in terms of critical points of this
function.

CLOSED SURFACES IN R3

Let S be a closed orientable smooth surface in R3.
Given x ∈ S, we denote by N(x) and K(x) the normal
vector and the Gauss curvature of S, respectively.

Theorem 3. Let S ⊂ R3 be a closed orientable
smooth surface in R3.

1. Let x ∈ S. It is a critical point of d|S if and only if
x = ±λN(x) if and only if TxS = TxS2(λ ) (where
d(x) = λ 2).

2. Let x ∈ S be a critical point of d|S.

(a) Suppose that x = −λN(x); then x is non-
degenerate if and only if κ1 6= 1

λ
and κ2 6= 1

λ

( 1
λ 2 is the Gauss curvature of S2(λ )). Moreover,

it is a local extreme or a saddle point of d|S
depending on weather ( 1

λ
− κ1)(

1
λ
− κ2) is

positive or negative, respectively.

(b) Suppose that x = λN(x); then x is non-
degenerate if and only if κ1 6= − 1

λ
and κ2 6=

− 1
λ

. Moreover, it is a local extreme or a
saddle point of d|S depending on weather
( 1

λ
+ κ1)(

1
λ
+ κ2) is positive or negative,

respectively.

Proof. To prove part 1 we consider

(∇d)x(v) =
d
dt
|t=0||α(t)||2

= 2〈α ′(0),α(0)〉= 2〈v,x〉 ,
(15)

where α : (−ε,ε) −→ S is a differentiable curve with
α(0) = x and α ′(0) = v. Then, (∇d)x(v) = 0 if and
only if v ⊥ x if and only if x = ±λN(x) if and only
if N(x) ⊥ TxS2(λ ) (||x|| = λ ) if and only if TxS =
TxS2(λ ). An alternative proof using local coordinates
can be found in Milnor (1969).

To prove part 2a we consider the Hessian of d at x,

(∇2d)x(v) =
d2

dt2 |t=0||α(t)||2 = 2
d
dt
|t=0〈α ′(t),α(t)〉

= 2(〈α ′′(0),α(0)〉+ 〈α ′(0),α ′(0)〉)
= 2(〈α ′′(0),−λN(x)〉+ 〈v,v〉) .

(16)

Now, if we take derivatives at t = 0 of the identity
〈α ′(t),−λN(α(t))〉= 0 we obtain

〈α ′′(0),−λN(x)〉=−〈v,−λdN(x)(v)〉 .

Since the second fundamental form of S at x is defined
as IIx(v,v) = −〈dN(x)(v),v〉 and it is symmetric, we
obtain

(∇2d)x(v) = 2(||v||2−λ IIx(v,v)) . (17)

Let {e1,e2} be a principal orthonormal frame at x;
then, in matrix form we have

(∇2d)x(v) = v
(

1−λκ1 0
0 1−λκ2

)
vT . (18)

So, x is non-degenerate if (1−λκ1)(1−λκ2) 6= 0;
that is, κ1 6= 1

λ
and κ2 6= 1

λ
. The rest of part 2a is

derived from the classification of local extrema and the
proof of part 2b is similar. �

Corollary 1. Let S ⊂ R3 be a closed orientable
smooth surface in R3. Then

χ(S) = ∑
x∈S/x=−λN(x)

sign(1−λκ1)(1−λκ2)

+ ∑
x∈S/x=λN(x)

sign(1+λκ1)(1+λκ2)

= ∑
x∈S/x=−λN(x)

sign(1−2λH(x)+λ
2K(x))

+ ∑
x∈S/x=λN(x)

sign(1+2λH(x)+λ
2K(x)) .

(19)
where H(x) denotes the mean curvature of S at x.

Proof. This formula is a direct consequence of
Eq. 1 and Theorem 3. �

Remark. In Milnor (1969) it is proved that for
almost all O ∈R3 the function d|S is a Morse function;
i.e., in general, all the critical points of d|S are non-
degenerate (these points are characterized in Theorem
3). When O ∈ S, from Eqs. 15 and 16, we have that
d|S has a non-degenerate critical point (minimum) at
x = O. In this case IndO(d|S) = +1.

DOMAINS IN R2

Let D ⊂ R2 be a domain with boundary. As in the
preceding section, we consider now the square of the
distance function d : R2→ R, instead of the square of
the distance function of R3. The level curves πλ 2 are
in this case circles S1(λ ).

We suppose that the origin O ∈ R2 r∂D, then, the
square of the distance function d|D only has the point
O as critical point (minimum) if O ∈ D (the distance
function d defined in D is given now by d(x,y) =
x2 + y2; and this function has a minimum at the point
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O = (0,0) ∈ D). Moreover, in general, the restriction
of the square of the distance function d|∂D is a Morse
function; then, from Eq. 14,

χ(D) = δ0(D)+
1
2 ∑

y∈Σ(d|∂D)

Indy(d|∂D) , (20)

where

δ0(D) =

{
1, if O ∈ D ,

0, if O /∈ D .
(21)

Lemma 1. Let D⊂R2 be a domain with boundary;
then,

χ(D) = δ0(D)+
1
2

(
∑

y∈∂D/y=−λn(y)
sign

(
κ− 1

λ

)

+ ∑
y∈∂D/y=λn(y)

sign
(

κ +
1
λ

))
,

(22)
where n(y) and κ(y) are the normal vector and the
curvature of the plane curve ∂D, respectively.

Proof. Suppose that α is a parameterization by
arc length of ∂D. Given a point y ∈ Σ(d|∂D), with
α(s0) = y, we have Dd(s0) = 〈α ′(s0),α(s0)〉 = 0,
then α ′(s0) is tangent to S1(λ ) at y. Moreover,
D2hu(s0) = 〈α ′′(s0),α(s0)〉 + 〈α ′(s0),α

′(s0)〉 =
〈κ(y)n(y),±λn(y)〉+ 1 = 1± λκ(y) so y is a local
extreme. Finally, from the way we have chosen the
orientation on ∂D and the definition of Indy(hu|∂D)
given in Eq. 14, we have the result. �

SURFACES WITH BOUNDARY IN R3

Let D ⊂ S ⊂ R3 be a domain with boundary in an
orientable smooth surface S in R3 (Gual-Arnau et al.,
2001). Parts 1 and 2 of Theorem 3 are valid here when
we restrict d|D and x ∈ D.

We will give a geometrical interpretation of the
critical points of d|∂D. The level sets S ∩ S2(λ ) and
D∩S2(λ ) are now curves in S. Given y ∈ ∂D, let n(y)
and κg(y) denote the normal vector and the geodesic
curvature of ∂D in D at y, respectively. We consider the
orientation in ∂D such that n(y) points to the interior
of D. Let κ0

g (y) denote the geodesic curvature of the
level curve D∩S2(λ ) at a regular point y of d|D. If the
curves S∩S2(λ ) and ∂D are tangent at y we choose in
S∩S2(λ ) the same orientation.

Theorem 4. Let D be a domain with boundary in
an orientable smooth surface S in R3.

1. Let y ∈ ∂D be a regular point of d|D. y is a critical
point of d|∂D if and only if the curves D∩ S2(λ )
and ∂D are tangent at y.

2. Let y ∈ ∂D be a regular point of d|D and a critical
point of d|∂D. y is non-degenerate if and only
if κg(y) 6= κ0

g (y). Moreover, it is an island when
κg(y)〉κ0

g (y) and it is a bridge when κg(y)〈κ0
g (y).

Proof. Suppose that β (s) is a parameterization of
S∩S2(λ ) by arc length with α(s0) = y. The vector y
can be expressed as

y =〈y,N(y)〉N(y)+ 〈y,β ′(s0)〉β ′(s0)

+ 〈y,N(y)∧β
′(s0)〉N(y)∧β

′(s0) .
(23)

Since 〈β (s),β (s)〉= λ 2 we have that 〈β ′(s0),y〉=
0.

Suppose now that α(s) is a parameterization of ∂D
by arc length with β (s0) = y. Then,

y =〈y,N(y)〉N(y)+ 〈y,α ′(s0)〉α ′(s0)

+ 〈y,N(y)∧α
′(s0)〉N(y)∧α

′(s0) ,
(24)

where N(y)∧α ′(s0) = n(y).

y is a critical point of d|∂D if 〈y,α ′(s0)〉= 0. Since
y is a regular point of d|D, from Theorem 3 we have
that y 6= λN(y); then, from Eqs. 23 and 24, y is a
critical point of d|∂D if and only if the normal vectors
to α and β in Ty∂D coincide, and therefore the curves
D∩S2(λ ) and ∂D are tangent at y.

To prove the second part of the theorem we
suppose that y = α(s0) is a critical point of d|∂D, i.e.,
〈α ′(s0),α(s0)〉= 0.

y will be a degenerate critical point of d|∂D if

〈α ′′(s0),α(s0)〉+ 〈α ′(s0),α
′(s0)〉= 0 ,

that is, 〈α ′′(s0),α(s0)〉=−1.

Since 〈β (s),β (s)〉 = λ 2 we have that
〈β ′′(s0),β (s0)〉=−1.

On the other hand,

〈α ′′(s0),y〉= κn(y)〈y,N(y)〉+κg(y)〈y,n(y)〉 , (25)

〈β ′′(s0),y〉= κn(y)〈y,N(y)〉+κ
0
g (y)〈y,n(y)〉 , (26)

where the normal curvature κn(y) of α at y coincides,
from the Meusnier’s theorem, with the normal
curvature of β at y. Then, subtracting Eq. 26 to Eq. 25,
we obtain

〈α ′′(s0),y〉+1 = (κg(y)−κ
0
g (y))〈y,n(y)〉 . (27)

Finally, since 〈y,n(y)〉 6= 0, we conclude that y is
non-degenerate if and only if κg(y) 6= κ0

g (y). The fact
that the cases κg(y)〉κ0

g (y) and κg(y)〈κ0
g (y) correspond

to an island or bridge, respectively, can be deduced
from the orientation we have chosen on ∂D. �
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