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ABSTRACT

We consider the inverse problem associated with IFSM: Given a target function f , find an IFSM, such that its
invariant fixed point f̄ is sufficiently close to f in the Lp distance. In this paper, we extend the collage-based
method developed by Forte and Vrscay (1995) along two different directions. We first search for a set of
mappings that not only minimizes the collage error but also maximizes the entropy of the dynamical system.
We then include an extra term in the minimization process which takes into account the sparsity of the set
of mappings. In this new formulation, the minimization of collage error is treated as multi-criteria problem:
we consider three different and conflicting criteria i.e., collage error, entropy and sparsity. To solve this
multi-criteria program we proceed by scalarization and we reduce the model to a single-criterion program by
combining all objective functions with different trade-off weights. The results of some numerical computations
are presented. Numerical studies indicate that a maximum entropy principle exists for this approximation
problem, i.e., that the suboptimal solutions produced by collage coding can be improved at least slightly by
adding a maximum entropy criterion.
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INTRODUCTION

In fractal image coding based on Generalized
Fractal Transforms (GFT), one seeks to approximate
a target image or signal v by the fixed point ū
of a contractive fractal transform operator T . The
usual formulation involves a fixed set of geometric
contraction maps along with a corresponding set of
greyscale maps. The inverse problem, which involves
the determination of the best greyscale map parameters
for a given target image, is based on the so-called
“Collage Theorem”, a simple consequence of Banach’s
fixed point theorem. Another consequence of Banach’s
fixed point result is that the approximation of the
target image or signal can be generated by iteration of
the fractal transform (see Hutchinson, 1981; Barnsley
et al., 1985; Barnsley and Demko, 1985; Barnsley,
1989; Barnsley and Hurd, 1993; Forte and Vrscay,
1995; 1999; Iacus and La Torre, 2005a; 2005b; Kunze
et al., 2008; 2009; 2012a; 2012b; La Torre et al.,
2009; La Torre and Vrscay, 2009; 2011). In Forte
and Vrscay (1995), the authors showed that one can
find an iterated function system with greyscale maps
(IFSM) to approximate any target signal or image with
arbitrary precision, and they provided a suboptimal but
systematic “collage-based” approach for doing so.

In this paper we extend the approach developed

in Forte and Vrscay (1995) along two different –
in fact, competing – directions, namely, entropy and
sparsity. First, we search for a set of mappings and
greyscale map parameters that not only minimizes
the so-called collage error but also maximizes the
entropy of the parameter set. A motivation for this
procedure is as follows. As stated earlier, given a
target image v, one would ideally like to find a
contractive fractal transform T with fixed point ū that
is as close as possible to v, i.e., which minimizes
the approximation error given by the distance E(u) =
d(v,u). This problem, however, is enormously difficult
and impractical. The Collage Theorem provides a
significant simplification in that one searches for
a fractal transform T – as defined by its fractal
parameters – which minimizes the “collage distance”
d(v,T v). Such a procedure is often easy to formulate
and solve algorithmically. As may be expected,
however, the fractal transform Tc yielded by this
collage-based method is suboptimal, i.e., its fixed
point ūc does not minimize the true approximation
error E(u). As such, we may consider the parameters
defining the suboptimal fractal transform Tc as
representing “incomplete” or “partial information.” We
now apply the maximum entropy principle of Jaynes
(1957), i.e., “making inferences on the basis of partial
information we must use that probability distribution
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which has maximum entropy subject to whatever
is known.” Here, a suitable probability distribution
over the relevant fractal parameters is defined and
employed.

Second, we examine the effects of maximizing the
sparsity of the set of greyscale parameters, i.e., forcing
as many of these parameters as possible to be zero.
The motivation of this approach is as follows. The
parameters defining the suboptimal transform Tc are
once again viewed as representing an approximation to
the true solution. We now borrow from sparsity studies
in signal and image processing, where it is often found
that a signal/image is well approximated by a vector of
coefficients with a small number of nonzeros (see Elad,
2010) – in other words, a vector with high sparsity.

In the new formulation presented in this paper,
the minimization of collage error is studied as a
multi-criteria problem. Three different and conflicting
criteria are considered, namely collage error, entropy
and sparsity. In order to reduce the complexity of this
model, we employ a scalarization technique which
allows the multi-criteria program to be reduced to a
single-criterion program by combining all objective
functions with different trade-off weights. This new
approach is illustrated through some numerical
examples which indicate that a maximum entropy
principle does exist for this approximation problem,
i.e., that the suboptimal solutions produced by collage
coding can be improved at least slightly by adding
a maximum entropy criterion. Similar results were
obtained in the context of measure approximation
using Iterated Function System with Probabilities
(IFSP) by La Torre and Vrscay (2012) and in the
analysis of inverse problems for differential equations
by collage methods in Kunze et al. (2012).

ITERATED FUNCTION SYSTEMS
ON FUNCTIONS: SOME BASICS

The action of a GFT T : X → X on an element u of
the complete metric space (X ,d) can be summarized
in the following steps. It produces a set of N spatially-
contracted copies of u and then it modifies the values
of these copies by means of a suitable range-mapping.
Finally, it recombines them using an appropriate
operator in order to get the element v∈X , v= Tu. In all
these cases, under appropriate conditions, the fractal
transform T is a contraction and thus Banach’s fixed
point theorem guarantees the existence of a unique
fixed point ū = T ū. The inverse problem is a key
factor for applications: given T : X → X a point-
to-point contraction mapping and a “target” element

v ∈ X , we look for a contraction mapping T with
fixed point ū such that d(v, ū) is as small as possible.
In practical applications, however, it is difficult to
construct solutions to this problem and one relies on
the following simple consequence of Banach’s fixed
point theorem, known in the fractal coding literature
as the collage theorem, which states that

d(v, ū)≤ 1
1− c

d(v,T v) (1)

(c is the contractivity factor of T ). Instead of trying to
minimize the error d(v, ū), one looks for a contraction
mapping T that minimizes the collage error d(v,T v).
In this section we focus on the method of iterated
function systems with greyscale maps (IFSM), as
formulated by Forte and Vrscay (1995), a GFT which
can be used to approximate a given element u of
L2([0,1]).

We consider the case in which u : [0,1]→ [0,1] and
the space

X =
{

u : [0,1]→ [0,1],u ∈ L2[0,1]
}
. (2)

The ingredients of an N-map IFSM on X are

1. a set of N contractive mappings w =
{w1,w2, . . . ,wN}, wi(x) : [0,1]→ [0,1], most often
affine in form:

wi(x) = six+ai , 0≤ si < 1, i = 1,2, . . . ,N;
(3)

2. a set of associated functions—the greyscale
maps—φ = {φ1,φ2, . . . ,φN}, φi : R → R. Affine
maps are usually employed:

φi(t) = αit +βi , (4)

with the conditions

αi,βi ∈ [0,1] (5)

and

0≤
N

∑
i=1

αi +βi < 1 . (6)

Associated with the N-map IFSM (w,φ) is the fractal
transform operator T , the action of which on a function
u ∈ X is given by

(Tu)(x) =
N

∑
i=1

′
φi(u(w−1

i (x))) , (7)

where the prime means that the sum operates on all
those terms for which w−1

i is defined.
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Theorem 1. (Forte and Vrscay, 1995) T : X → X and
for any u,v ∈ X we have

d2(Tu,T v)≤Cd2(u,v) , (8)

where

C =
N

∑
i=1

s
1
2
i αi . (9)

When C < 1, then T is contractive on X , implying
the existence of a unique fixed point ū ∈ X such that
ū = T ū.

The inverse problem associated with IFSM can,
in principle, be solved to arbitrary accuracy, using a
procedure defined in Forte and Vrscay (1995). The
squared collage distance function associated with an
N-map IFSM may be written as a quadratic form,

∆
2 = zT Az+bT z+ c , (10)

where z = (α1, . . .αN ,β1, . . . ,βN). The maps wk are
chosen from an infinite set W of fixed affine
contraction maps on [0,1] which satisfy the following
properties.

Definition 2.1. We say that W generates an m-dense
and nonoverlapping family A of subsets of I if for every
ε > 0 and every B⊂ I there exists a finite set of integers
ik, ik ≥ 1, 1≤ k ≤ N, such that

– A = ∪N
k=1wik(I)⊂ B,

– m(B\A)< ε , and

– m(wik(I)∩wil (I)) = 0 if k 6= l,

where m denotes Lebesgue measure.

Let
W N = {w1, . . .wN} (11)

be the N truncations of w. Let ΦN = {φ1, . . . ,φN} be
the N-vector of affine grey level maps. Let Ω be a
compact subset of set R2N which describes the set of
all possible constraints and let zN be the solution of
the previous quadratic optimization problem over Ω.
Let ∆2

N,min = ∆2
N(zN). In Forte and Vrscay (1995), the

following result was proved.

Theorem 2.

∆
2
N,min→ 0 as N→ ∞ .

Using the Collage Theorem, the inverse problem
may be solved to arbitrary accuracy. A practical choice
for the contraction maps w on X = [0,1] is

wi j(x) = 2−i(x+ j−1), i = 1,2, . . . , j = 1,2, . . . ,2i.

COLLAGE ERROR MINIMIZATION,
ENTROPY AND SPARSITY
MAXIMIZATION

Solutions to the optimization problem,

min
z∈Ω

∆2(z) (12)

using a quadratic programming algorithm were
presented in Forte and Vrscay (1995). Here we
consider an extension of the above optimization
problem which includes two additional objective
functions, namely, maximum entropy and sparsity. The
reasons for adding these two criteria were discussed in
the Introduction but we recall them briefly here.

On the one hand, it is desired to improve
the results obtained from the collage-based method,
acknowledged as being suboptimal, thereby obtaining
a better approximation of the target image. In fact,
from Eq. (1), we see that the collage error d(v,T v)
provides an upper bound to the error, d(v, ū), in
approximating the target v with the fixed point ū of T .
We consider the maximum entropy principle as a way
of improving the collage-based approximation.

On the other hand, collage error minimization
often provides a solution with several nonzero
coefficients, many of them being very close to zero.
Once again borrowing the idea of sparsity from
signal/image processing, it seems to be quite natural
to ask – especially in the context of data compression
– if there exists an alternative solution which possesses
a lesser number of nonzero coefficients – hence
greater sparsity – but which still produces a small
approximation error. This is the role played by the
function F2 below which counts the number of nonzero
coefficients zi – essentially the l0 norm of the vector z –
which is a measure of the lack of sparsity of z. Bearing
these motivations in mind, the collage-based inverse
problem for images can be viewed as a multi-objective
optimization problem which involves the following
three criteria:

– F1(z) = zT Az+bT z+ c,

– F2(z) = ∑
N
i=1 H(zi), where H(zi) = 1 if zi > 0 and

0 otherwise,

– F3(z) = ∑
N
i=1

zi
Z ln

( zi
Z

)
where Z = max{zi}.

The function F1 is the squared collage distance and
it has to be minimized. . As mentioned above, the
function F2 measures the lack of sparsity of z and
therefore has to be minimized. Finally the function F3
is the negative Shannon entropy, which will have to be
minimized. (Here we mention that other definitions of
entropy could, in principle, be used.)
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We are now interested in the solution to the
following multi-objective problem,

min
z∈Ω

(F1(z),F2(z),F3(z)) , (13)

where Ω is a compact subset of set R2N which
describes the set of all possible constraints. Because of
presence of F2 this optimization problem is nonsmooth
and NP hard. We then proceed by replacing the
function F2 with a differentiable approximation. For
this purpose, we propose the following approximation
of Hi(z),

Hα(zi) := 1− exp(−αz2
i ), α > 0 , (14)

and the accuracy of this approximation increases as
α →+∞.

There are different techniques to deal with a
multi-objective optimization problem and the notion
of optimal solution has to be understood in the Pareto
sense. In fact it is unlikely to be able to determine
an optimal vector zmin which minimizes all criteria
simultaneously. However in practical situations, the
simplest and most common approach which is used
in this context is the one based on a scalarization
technique. The idea behind this approach consists of
combining all different criteria in a unique objective
function by introducing a vector of non-negative
weights, L=(l1, l2, l3), ∑

3
i=1 li = 1. The scalarization of

the above multi-objective model leads to the following
single-criterion optimization problem

min
z∈Ω

l1F1(z)+ l2F2(z)+ l3F3(z) . (15)

NUMERICAL SIMULATIONS

The following examples illustrate that adding
small-weighted entropy and sparsity constraints can
lead to a better fixed point approximation.

Example 1. For j = 1, . . . ,N, we introduce the family
of IFS maps{

w j
i (x) = 1

2i x+( j−1) 1
2i ,

φ
j

i (t) = α
j

i t +β
j

i ,
i = 1, . . . ,2 j,

which for each j defines an associated IFSM map

(Tju)(x) =
2 j

∑
i=1

′
φ

j
i (u((w

j
i )
−1(x))) .

The map Tj assembles 2 j shrunken and adjusted copies
of u(x), each supported on an interval of width 1

2 j , of

the function u. For fixed j, the domains of the maps w j
i

only overlap at the endpoints of their domains. On the
other hand, any point x ∈ [0,1] that is not a multiple
of 1

2m for some m appears in the domain of exactly
N of the maps in the family, once per member of the
family, offering a sort of map redundancy. We define
the combined (contractive) map

(Tu)(x) =
N

∑
j=1

(Tju)(x) ,

and consider the associated squared collage distance
F1(z), where z is the vector of parameters α

j
i and β

j
i .

In this example, we explore the scalarized optimization
problem (15).

We choose the target function v(x) = 0.8x2 + 0.1,
x ∈ [0,1]. We set N = 4, which means we have a total
of 60 parameters in the optimization problem. We use
the nonlinear program solver in Maplesoft’s Maple to
solve (15). The first row of Table 1 shows the results
without any entropy or sparsity constraints; we use 38
nonzero parameters. In the Table, values are presented
with numbers of decimal places that illustrate the effect
of changing the weights l1, l2, and l3, and ‖v− ū‖2
is the L2 distance between the target v(x) and the
resulting fixed point approximation ū = T ū.

Table 1. Results of Example 1.

l2 l3 (×10−5)
√

F1(z)
0 0 0.014300
0 1.3 0.014409
0 1.4 0.014420
0 1.5 0.014435
0.3 0 0.756211
0.01 0 0.066448
0.0001 0 0.016935
0.0001 1.5 0.016358

l2 F2(z) F3(z) ‖v− ū‖2

0 38 -7.808589 0.0000741868
0 60 -12.648761 0.0000739184
0 60 -12.560957 0.0000731701
0 60 -12.701199 0.0000730789
0.3 6 -2.348598 0.0029801527
0.01 8 -2.545824 0.0003091702
0.0001 10 -2.984062 0.0000789527
0.0001 23 -7.929161 0.0000754027

In the absence of a sparsity constraint, i.e., when
l2 = 0, we see that adding an entropy constraint
with relatively small weighting l3 leads to parameter
values corresponding to a larger collage distance but
to a better fixed point approximation. The numerical
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Fig. 1. (left-to-right) Iterations 2, 4, and 8 of 23-map IFSM operator corresponding to the final row of Table 1.

results are presented in rows two through four of
the table; note that all 60 parameters are nonzero
in these cases. Including only sparsity constraints, as
in rows five to seven of the table, we see that the
number of nonzero parameters is reduced dramatically
from the collage distance case. Row five presents
results for a case where only six parameters are
nonzero, but the approximation error suffers. In row
seven, we demonstrate that we can come close to the
approximation error in row one while only using 10
nonzero parameters. Finally, in row eight, we include
both entropy and sparsity constraints and come very
close to the approximation error in row one by using
less than two thirds of the number of parameters.
Fig. 1 displays some iterates of the IFSM operator T
corresponding to the final row of the table.

Example 2. We repeat the process of Example 1,
this time using a nonmonotone target function v(x) =
sinπx and setting N = 6 (corresponding to 124
parameters). Table 2 presents the results.

Table 2. Results of Example 2.

l2 l3 (×10−7)
√

F1(z)
0 0 0.286458
0 5 0.286458
0 1 0.286458
0.0001 1 0.286500

l2 F2(z) F3(z) ‖v− ū‖2

0 62 -19.707141 0.001142806379840
0 65 -23.653037 0.001142806381003
0 65 -23.651937 0.001142806379732
0.0001 35 -9.814576 0.001142959788729

In Fig. 2, we show some iterates of the IFSM
operator T corresponding to the final row of the table.

Fig. 2. (left-to-right) Iterations 2, 4, and 8 of 23-map IFSM operator corresponding to the final row of Table 2.
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