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ABSTRACT 

Fluorescence microscopy imaging has become one of the essential tools used by biologists to visualize and 

study intracellular particles within a cell. Studying these particles is a long-term research effort in the field of 

microscopy image analysis, consisting of discovering the relationship between the dynamics of particles and 

their functions. However, biologists are faced with challenges such as the counting and tracking of these 

intracellular particles. To overcome the issues faced by biologists, tools which can extract the location and 

motion of these particles are essential. One of the most important steps in these analyses is to accurately detect 

particle positions in an image, termed spot detection. The detection of spots in microscopy imaging is seen as 

a critical step for further quantitative analysis. However, the evaluation of these microscopic images is mainly 

conducted manually, with automated methods becoming popular. This work presents some advances in 

fluorescence microscopy image analysis, focusing on the detection methods needed for quantifying the 

location of these spots. We review several existing detection methods in microscopy imaging, along with 

existing synthetic benchmark datasets and evaluation metrics. 
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INTRODUCTION 

Advances in fluorescence microscopy have made it 

possible to visualize and study the interaction of sub-

cellular particles, important because the fundamental 

functions of biological processes occur at the subcel-

lular level (Kervram, 2016). Cells contain subcellular 

structures such as nucleic acids, proteins and orga-

nelles. Monitoring these structures at a subcellular 

level can help in answering open questions in cell bio-

logy (Rezatofighi, 2015). The initial key step in under-

standing certain biological concepts is to detect and 

study the interaction of these subcellular structures. To 

do this, these structures are specifically labelled with 

fluorescent probes, which are then observed under 

fluorescence microscopy as bright spots superimposed 

on a dark or uneven background, as shown in Fig. 1. 

The term ‘spot’ in our study, refers to a local intensity 

maximum in the microscopy image whose intensity is 

significantly different from its neighbourhood. Studying 

the location of these spots is an important task for 

further image analysis (Basset, 2015; Kervram, 2016) 

including spot counting (Byun, 2006; Raj, 2008), spot 

tracking (Genovesio, 2006; Chenouard, 2014) and spot  

pattern recognition (Jackson, 2011).  

All of these analyses require a reliable and accurate 

spot detection method and, as a result, the detection of 

spots in microscopy imaging is generally accepted as 

a key step to gain information about certain aspects of 

cell functions and to assist further analysis (Genovesio, 

2006; Ruusuvuori, 2010; Smal, 2010; Basset, 2015). 

The task of spot detection in microscopy images is to 

determine if a given image contains one or more 

groups of connected pixels that display high-intensity 

values compared to their background and to calculate 

their positions in the image. These high-intensity spots 

represent fluorescent molecules within a cell. However 

there are several issues which complicate quantitative 

analysis of microscopy data. The image development 

process in fluorescence microscopy can be modelled 

mathematically by con-volving a function of a sample 

being imaged with a point spread function (PSF) of a 

microscope and cor-rupting the image with a noise model 

as described in Eq. 1: 

 𝐼𝑚𝑎𝑔𝑒 = 𝑃𝑆𝐹 ∗ 𝑂𝑏𝑗𝑒𝑐𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 + 𝑁𝑜𝑖𝑠𝑒, (1) 

where “∗” signifies convolution. 
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Fig. 1. An illustration of microscopy images showing multiple mRNA localization spots visualized through 

fluorescence microscopy (Raj, 2016). 

The PSF describes the way information on the 

object function is spread as a result of recording the 

data, modelled as: 

 𝑃𝑆𝐹(𝑟) = (
2 𝐽1(𝑟𝛼)

𝑟
)
2
, (2) 

where, 

 𝛼 = 2𝜋𝑁𝐴 𝜆⁄ , (3) 

and 𝑁𝐴 is the numerical aperture, 𝜆 is the wavelength 

of light, 𝑟 the distance to origin, and  𝐽1 is the Bessel 

function of order 1 and the object function describes 

the object being imaged and the way light is emitted 

from the object to the imaging instrument. 

The main issue which complicate data analysis in 

microscope images is noise. Noise is a nondetermi-

nistic function which is caused by unwanted external 

disturbances which occur during the image acquisition 

process in fluorescence microscopy. Noise refers to 

random variations in pixel intensities, caused by sensors. 

There exists a variety of noise types in micro-scopy 

imaging, the most common ones are readout, dark and 

photon noise. The photon noise in micro-scopy images 

is caused by stochastic nature of photons emitted. Photon 

noise has a Poisson distribution and is sometimes 

referred to as Poisson noise. This kind of noise is 

unavoidable and is always present in an optical image. 

The statistical distribution of photon noise is described 

by the Poisson model, 

 𝑃(𝑥; 𝜆) =
𝜆𝑥𝑒−𝜆

𝑥!
   𝑓𝑜𝑟 𝑥 = 0, 1, 2, …, (4) 

where 𝜆 > 0 is the mean and the variance of the 

intensity.  

Dark noise is another type of noise in microscopy 

images, which is formed as a result of thermally-gene-

rated electrons in charge-coupled devices (CCD). Read-

out noise in microscopy images is introduced during 

the conversion from analogue to digital. The influence 

of such noise can be measured and be provided by the 

instrument. Readout noise follows a normal distribu-

tion and modelled as, 

 𝑁(µ, 𝜎2: 𝑥) =
1

𝜎√2𝜋
𝑒
−
(𝑥−𝜇)2

2𝜎2 , (5) 

where µ, is the mean and 𝜎2, is the variance. 

Other issues which hinder the performance of many 

spot detection methods include non-uniformity in micro-

scopy images and overlapping spots. These issues should 

be taken into account when developing an automated 

detection algorithm. There exist two ways to detect 

spots in microscopy imaging, manual detection, and 

automated detection. Manual detection requires the 

operator to manually record the coordinates of each 

spot in a given image sequence. This process can be 

time- consuming given large data sets, prone to errors, 

and very laborious. Other disadvantages of manual 

detection include that it is user dependent, inaccurate 

and its results cannot be repeated. To overcome the 

challenges of manual detection, automatic spot detection 

has drawn much attention from researchers in bio-

imaging. These methods have an advantage over manual 

detection in the sense that they are much quicker and 

produce reproducible results. These methods have 

been previously classified as either supervised or 

unsupervised methods (Smal, 2010), the difference 

between the two are described in Section 0. Extensive 

efforts to develop automatic spot detection methods to 
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minimize the need for manual detection have been 

ongoing. Previous comparative study (Smal, 2010) has 

shown that the supervised methods perform best com-

pared to unsupervised methods on low-quality synthetic 

images, (signal-to-noise ratio, SNR ≈ 2). However, as 

SNR increases (SNR > 5) the difference in performance 

of the considered methods was negligible. A number 

of different automated ap-proaches were developed for 

the extraction of spots locations in microscopy images; 

these approaches included the morphological-based 

methods (Smal, 2008), wavelet-based methods (Olivo-

Marin, 2002) and supervised based methods (Jiang, 

2007; Ram, 2012). Recently, two detailed quantitative 

comparison studies of different spot detection methods 

in microscopy imaging were provided in (Ruusuvuori, 

2010; Smal, 2010). The study by Smal et al. (2010) 

included seven unsupervised and two supervised de-

tection methods in microscopy images. The experi-

ments conducted included the use of synthetic images 

as well as on real images of fluorescence microscopy. 

Both studies emphasized the need for a good auto-

mated spot detection method to overcome the limita-

tions encountered by some of the existing methods.  

SPOT DETECTION 

Automated Detection 

The typical goal of automated detection methods is to 

find an association function from input patterns to an 

output value. In this case, we have images of a particle 

of interest from an input data and correct labels as 

corresponding output data. A typical spot detection 

usually consists of three steps (Smal, 2010): (i) pre-

processing, (ii) signal enhancement, and (iii) object 

extraction, however, the procedure at which these steps 

are implemented can vary with signal enhancement 

step being the most important one.  

The pre-processing step first enhances the input 

image, reduces image noise and suppresses the inten-

sity of background structures (e.g., cell background) 

using denoising algorithms resulting in a denoised 

image, Techniques for pre-processing can vary from 

basic filtering to more sophisticated methods (Dabov, 

2007). A simple known approach to pre-process the 

image is to use linear filters. The most common linear 

filter is the Gaussian filter. Given an input image 

𝐼(𝑥, 𝑦), the filtered image 𝐼𝑓(𝑥, 𝑦) is given as: 

 𝐼𝑓(𝑥, 𝑦) = 𝐺𝜎 ∗ 𝐼(𝑥, 𝑦), (6) 

where, 𝐺𝜎, the Gaussian kernel is defined as: 

 𝐺𝜎(𝑥, 𝑦) =
1

2𝜋𝜎2
𝑒
−
(𝑥2+𝑦2)

2𝜎2 , (7) 

with, 𝜎 being the width of the kernel. 

Conducting a convolution with kernel enhances 

the regions that resemble a Gaussian kernel. The 

appearance of spots resembles a Gaussian kernel, so 

image regions resembling spots will be enhanced. In 

general, the Gaussian filter works on images corrupted 

by random noise. The Gaussian filter blurs the image 

by attenuating high frequencies while passing the low 

frequencies. Additional methods for pre-processing 

the images includes the non-linear filters such as me-

dian filters. The median filter replaces the target pixels 

with the median of neighbouring pixels. 

In the signal enhancement, the goal is to find 

regions in an image that correspond to a spot by 

applying image processing techniques on the noise 

filtered image. The signal enhancement is the most 

important step in a spot detection method. There exist 

a number of methods for signal enhancement such as, 

for example, H-Dome, wavelet, kernel density estima-

tion, a detailed discussion of these methods are listedin 

Section 0. A simple technique is to apply a threshold 

to the pre-processed image. This will result in pixel 

values which are above the threshold are assumed to 

represent a spot. This procedure depends on the 

threshold selected, thus setting a threshold too low will 

result in detecting more false positives and too high, 

false negatives will arise. The output of this step is a 

binary image which presents the likelihood of spots. 

Object extraction, the main aim of this step is to 

derive the descriptors of each detected spot in an 

image. These descriptors include, for example, the 

coordinates, mean intensity, and size of each detected 

spot in an image. In order to compute such descriptors 

on the enhanced image, a decision threshold is em-

ployed to obtain a binary image. In order to calculate 

such descriptors, a connected component labelling is 

employed to identify set of adjacent pixels. Each 

connected component will represent one spot then spot 

properties can be computed.  

After performing the above steps, biological objects 

are localized within an image, and their corresponding 

features can be measured using a statistical classifier 

in order for such object to be classified.  

Various quantitative properties are computed such 

as: 

 Area, this computes the total number of pixels in a 

detected object. It also describes the size of the 

detected object. 

 Centroid, this estimate the centre of mass of the 

detected object.  
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 Local maximum, this describes voxel with the 

highest intensity in a specific region. 

 Other properties include measures of dispersion 

and central tendency of all objects with voxel 

intensity. Also, the deepness of the detected object 

can be computed.  

These computed properties can help in making 

final decisions of whether the detected object should 

be classified as a spot or not. This information may 

help in confirming or rejecting the presence of a 

disease in histopathology image analysis and improve 

the understanding of biological mechanisms within a 

cell. A number of automated spot detection methods 

exist in the literature; examples include (Olivo-Marin, 

2002; Jiang, 2007; Kimori, 2010; Ram, 2012; Reza-

tofighi, 2012; Basset, 2015; Jaiswal, 2015). A broad 

evaluation of various automated spot detection methods 

in microscopy imaging was reported in (Ruusuvuori, 

2010; Smal, 2010).  

Categorization of various spot detection 
methods 

According to the quantitative survey by Smal (2010), 

the existing spot detection methods can be categorized 

into two groups, ‘supervised’ and ‘unsuper-vised’ 

methods as shown in Fig. 2. In supervised methods, a 

model is prepared via a training process where it is 

required to make predictions and corrected when those 

predictions are wrong. The training task continues 

until the model achieves the desired level of accuracy 

on the training data. The supervised methods are 

known to perform better than the unsupervised 

methods; however, their performance depends on the 

training step which is subject to having reliable ground 

truth data. They are usually used when a large training 

dataset is available. The disadvantage of the super-

vised methods is that they require re-training whenever 

the characteristics of the data change. The un-super-

vised methods refer to non-supervised where user-

specified values are used for either the parametric 

template or model used for noise-suppression/spot-en-

hancement as well as for the threshold for distingui-

shing between spots and background. Typically, these 

methods do not require training, and usually assume 

that the spots are isolated, and rely on simple image 

processing techniques and don’t require the availability 

of labelled training data nor a learning framework. In 

an unsupervised method, a model is prepared by dedu-

cing structures present in the input data. An example 

of such a method is provided in (Olivo-Marin, 2002). 

 

Fig. 2. Steps involved in a spot detection method (supervised and un-supervised). The abbreviations stand for 

Histogram of orientated gradients (HOG), Bag-of-Visual-words (BoV), support vector machine (SVM), k-nearest 

neighbor (kNN) and conditional random fields (CRF). 
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We have followed similar categorization scheme 

(i.e., supervised and un-supervised) as proposed by 

Smal (2010). Figure 2 shows the various steps 

involved in detection methods. In this review, we 

included most of the popular spot detection methods in 

microscopy imaging. We aimed at including methods 

which are publicly available, commonly used, and which 

cover the basic spot detection algorithm classes. The 

following subsections provide descriptions of the algo-

rithms, including methods. The key steps of each method 

are explained, and the listings of their adjustable para-

meters are shown with brief descriptions.  

Un-supervised methods 

Intensity thresholding 

A detection method based on thresholding is one of the 

easy and widely implemented algorithms. Thresholding 

works by grouping pixels in an image into two classes, 

dark and light, depending on whether the pixel is 

below or above a predefined intensity threshold. The 

threshold parameter can be obtained using techniques 

such as Otsu’s method (Otsu, 1979). Thresholding is 

the creation of a binary image from a grey-scale image 

by turning all pixels which are less than a given value 

to zero and all pixels above a given threshold to one. 

A thresholded image, ℎ(𝑥, 𝑦) of 𝑓(𝑥, 𝑦) is given by 

 ℎ(𝑥, 𝑦) = {
1, 𝑓(𝑥, 𝑦) ≥ 𝑇
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (8) 

where T is the predefined threshold. 

The problem with thresholding is that it only con-

siders the pixel’s intensity and not any relationship 

between the pixels. Also, these approaches cannot handle 

complex images in which the contribution of background 

intensities exceeds that of a spot. In this case, the 

algorithm will result in detecting more false positives.  

Kozubek 

Kozubek (1999) presented a method for spot detection 

named “gradual thresholding” which is based on the 

watershed technique for the detection of spots in 2D 

and 3D FISH-stained interphase nuclei images. During 

the pre-processing, noise is suppressed using a Gaus-

sian filter, followed by a series of thresholds starting 

from the maximum threshold (maximum intensity within 

the cell nucleus) to the lowest one (the mean back-

ground intensity). At each intensity level, a segmen-

tation is applied and compared with segmentation 

obtained for the previous (higher) threshold. For every 

new spot which appears in the segmented image, two 

possibilities are considered: 

 Either the newly detected spot corresponds to a 

new spot, which has not been identified so far. Or,  

 the newly detected spot is a result of intensity 

fluctuation of the previously detected spot which 

is located nearby.  

The differentiation of these two cases is based on 

the difference of intensities between the newly 

detected spot, and the nearby spot of which it may 

potentially be a part. The maximum allowed intensity 

difference and distance are specified based on the ex-

pected image properties. If the new object segmented 

at the threshold level 𝑡𝑗−1 is found to be a part of a spot 

that was already present at 𝑡𝑗, the properties of the spot 

are updated accordingly. During the final step, the 

candidate spots are filtered based on size and intensity 

criteria. 

The free parameters of the method are the fol-

lowing: 

 Gaussian kernel width 𝜎, 

 distance for intensity fluctuations, 

 allowable intensity difference, 

 spot size. 

Netten 

An approach similar to the Kozubek (1999) method 

was proposed by Netten (1997) termed “dot label”. 

The detection method is made up of three steps. The 

first step consists of defining the region-of-interest 

(ROI) containing the nucleus. Then an ISO-DATA 

thresholding (Velasco, 1980) is applied within an ROI 

to distinguish between the nucleus and back-ground, 

followed by grey-value opening to remove the dots. 

After the nuclei segmentation, features which describe 

size, shape and intensity are measured and used to 

classify the segmented nuclei and reject debris.  

Secondly, for each segmented nucleus, spots are 

detected by applying a 3D morphological top-hat trans-

formation method with a structuring element larger 

than the expected size of a spot followed by a constant 

threshold, where the threshold level is defined as: 

 𝜃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝜇𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 + 𝑘 × 𝜎𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 , (9) 

where 𝜇𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 and 𝜎𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 are the mean and 

standard deviation of the background. 

These parameters, mean and standard deviation, 

are estimated using pixels which are less than the 90 

percentile of the top-hat image. After applying a 3D 

top-hat transform, most spots will be detected but some 

will appear to be merged. A non-linear Laplacian filter 

is applied to split the touching dots. The Laplacian 

filter is sensitive to noise and will result in detecting 

false spots. Thirdly, to overcome these issues, a 3D 
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top-hat is applied with a variable threshold to label the 

spots. The threshold level, 𝜃𝑠𝑒𝑒𝑑, is swept through the 

image intensities starting at the maximum intensity of 

the image and progressing towards background intensity. 

When new spots are encountered at the level corres-

ponding to the current threshold level, they are either 

treated as a part of an already detected spot nearby, or 

as a seed of a new spot. This decision is based on 

whether the detected spot is linked to the existing spot 

by a list of pixels whose intensities lie within the thres-

hold band.  

The free parameters of the method are the follo-

wing: 

 Radius of structuring element, 𝑟 which determines 

the size of the detected spot 

 Background level percentile (lowest intensity for 

the sweeping threshold band) 

Seed growing 

Seed growing based on local thresholding for spot 

detection method was suggested by Gue et al. (2005) 

for the extraction of spots locations in micro-scopy 

images. The first step of the method suppresses noise 

by applying a median filter to the input image. Then a 

3D morphological top-hat filter is performed to further 

reduce the amount of noise and enhance spots, 

followed by the detection step. The spot detection step 

determines the pixels with intensity values greater than 

the intensity threshold 𝑃% of the histogram. These are 

regarded as critical pixels of each spot. Then a local 

threshold is computed, depending on the mean and 

standard deviation of the intensities at (𝑥, 𝑦, 𝑧) lines 

passing through the centre of the detected spot.  

Following the top-hat filtering is the segmentation 

of spots. The pixels with intensity in the 𝑃% of the 

histogram are classified as seeds where a spot will be 

segmented. The seed selection and growing are applied 

until no unsegmented pixels with the intensity in the 

top 𝑃% of the histogram remain. 

As the final step, morphological closing and opening 

are applied to the spot masks, thus compacting the 

shapes and removing holes and objects that are too 

small to be considered.  

The free parameters of the method are the follo-

wing: 

 median neighbourhood size, 

 radius of the structuring element (SE) for top-hat 

filter, 

 intensity threshold P, 

 radius of the SE for the closing and opening. 

Raj  

The Raj detection method (Raj, 2008) is based on 

multiple thresholding of an image. First, the image is 

filtered with a Laplacian of Gaussian (LoG) defined in 

Eq. 19 to reduce the influence of noise and enhance 

spot structures. Then thresholding is performed on a 

filtered image. Then the number of spots found upon 

thresholding is plotted as a function of threshold. The 

presence of a plateau indicates that there is a region in 

which the detected spots are insensitive to a threshold 

value. The dotted line indicates the selected threshold 

within a plateau in which the numbers of detected 

spots are determined. However, the threshold selection 

in this algorithm is user selected. 

The free parameter for the method 

 User threshold. 

EMax 

The EMax detection method was introduced by Matula 

(2010) based on 3D morphological extended maxima. 

The method was used for the detection of endoplasmic 

reticulum exit sites (ERES) in 3D confocal microscopy 

images. ERES are subcellular structures in a cell res-

ponsible for collecting newly formed carrier molecules 

to transport them to Golgi apparatus. The method starts 

by convolving a 3D Gaussian kernel with the original 

image to suppresses noise and enhance spots. Then, a 

HMax transform is applied, defined as, 

 𝐻𝑀𝑎𝑥ℎ(𝐼) = 𝑅𝐼(𝐼 − ℎ), (10) 

where 𝑅𝐼(𝐼 − ℎ), denotes the morphological recon-

struction of image, 𝐼.  

The HMax transform will suppress all intensity 

maxima whose height is less than or equal to ℎ. The 

EMax transform is defined as regional maxima of the 

HMax image, 

 𝐸𝑀𝑎𝑥ℎ(𝐼) = 𝑅𝑀𝑎𝑥(𝐻𝑀𝑎𝑥ℎ(𝐼)), (11) 

where, 𝑅𝑀𝑎𝑥 is the regional maxima, which are 

defined by subtracting the h-maxima from image 𝐼 
with ℎ = 1; 

 𝑅𝑀𝑎𝑥(𝐼) = 𝐼 − 𝐻𝑀𝑎𝑥ℎ(𝐼). (12) 

After the EMax transform is computed those 

connected components of the resulting image whose 

size is lower than the specified limit for fluorescence 

spots are accepted as spots. When adjusting the height 

threshold h, the number of detected spots varies.  

The free parameters for the method 

 Spot height threshold, ℎ 
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 Maximum allowed spot size 

 Gaussian kernel width, 𝜎 

The H-Dome 

The HDome method was presented by Smal (Smal, et 

al., 2010) based on the morphological HDome transform 

of Vincent (Vincent, 1993). The method first uses a 

Gaussian filter at a scale that corresponds to the 

smallest spot to suppress noise in the input image. 

Then, the HDome transform is applied to the Gaussian 

filtered image as described in (Smal, 2010), defined as, 

𝐻𝑑𝑜𝑚𝑒(𝐼(𝑥, 𝑦)) = 𝐼(𝑥, 𝑦) − 𝜌𝐼(𝐼(𝑥, 𝑦) − ℎ), (13) 

where (𝐼(𝑥, 𝑦) − ℎ) denotes the results of subtracting 

a constant, ℎ, from a gray-scale image 𝐼(𝑥, 𝑦), and 

𝜌𝐼(𝐼(𝑥, 𝑦) − ℎ) is the morphological reconstruction of 

the gray-scale image, 𝐼(𝑥, 𝑦) from (𝐼(𝑥, 𝑦) − ℎ). The 

parameter h corresponds to the height of the structures 

to be extracted. The HDome transform result in local 

maximum of a a the input image whose height is 

greater than ℎ. This will yield regions which corres-

pond to spots or background structures with high 

intensity, referred to as domes. These domes are then 

raised to exponent, 𝑠, and the resulting image is the 

sampling step. The number of samples (highest) is 

placed at the location where the intensity is highest. 

Then, these samples are divided into clusters by the 

mean shift algorithm (Fukunaga & Hostetler, 1975). 

Two criteria are defined for each cluster to be consi-

dered as a spot,  

 The number of cluster samples must be high enough.  

 The determinant of the covariance must be within 

a specified range, identifying between spots and 

artefacts.  

Then, the position of each spot is calculated as the 

centre of mass of the corresponding cluster. 

The free parameters for the method 

 HDome height, ℎ 

 Gaussian kernel width, 𝜎 

 Sample number, n 

 Kernel radius, r 

 𝜎𝑀 threshold for the covariance matrix 

 Exponent, 𝑠, used for importance sampling 

Rezatofighi  

Rezatofighi (2012) proposed a detection method 

termed, maximum possible height dome (MPHD) for 

locating spots in fluorescence microscopy images. The 

proposed method overcomes the limitations of the H-

Dome method in (Smal, 2010), which is more sensitive 

to parameter, ℎ and has a tendency of mer-ging 

neighbouring bright spots and sometimes misses less 

bright spots, due to the fact that spots do not have the 

same magnitude, ℎ. The method uses a Gaussian filter 

to suppress the effect of background noise with the 

standard deviation set to be the size of the smallest 

object in the image. The H-Dome transform is perfor-

med on the filtered image. However, instead of cho-

osing the threshold value of, ℎ, by trial and error, their 

method computes a suitable threshold value, ℎ, for 

each particle based on local information and designs a 

mask to enhance those particles appropriately. Two 

criterias are defined when designing an adaptive mask; 

 First, for each local maximum in a filtered image, 

an optimal point is defined by using a line seg-

ment, 𝑙𝑠(𝜃, 𝑟), with 𝜃 being the angle and 𝑟 the 

radius. The optimal point is then defined as the 

nearest local minimum, 𝑥𝑙
𝜃 within a search area. 

 The optimal point, 𝑥𝑙
∗, has the maximum intensity, 

𝑥𝑙
∗ = 𝑎𝑟𝑔max

𝑥∈𝐿𝑥
(𝐼(𝑥)). 

The mask, 𝑀𝑎 is obtained by centering peaks wit-

hin the positions of local maxima with an intensity that 

corresponds to 𝐼(𝑥𝑙
∗(𝑖)) instead of using, 𝐼 − ℎ, as in 

(Smal, 2010).  

The maximum possible height dome, 𝐻 is then 

defined as: 

 𝐻(𝐼,𝑀𝑎) = 𝐼 − 𝑅(𝐼,𝑀𝑎). (14) 

The image, 𝐻 contains all maximal structures such 

as, noise, background structures and spots. The spots 

will appear as domes with intensity higher compared 

to the regional background. Then applying intensity 

threshold, T will suppress background structures. The 

spots positions are then calculated using intensity-

weighted centroid of the domes. 

The free parameters are: 

 Gaussian filter standard deviation, 𝜎 

 Dome radius, 𝑟 

 Intensity threshold, 𝑇 

Kimori 

The top hat rotational morphological processing (RMP) 

algorithm is a morphological processing algorithm 

presented by Kimori (2010) for the detection of spots 

from electron microscopy images. The proposed 

algorithm consists of three steps, noise reduction, spot 
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extraction, and binarization. The first step, noise re-

duction, suppresses noise in an image by using a 

Gaussian filter resulting in a filtered image, 𝐼𝑓(𝑥, 𝑦).  

The second step, spot extraction, this step involves 

the rotation of the filtered image, 𝐼𝑓(𝑥, 𝑦) in a clock-

wise direction with respect to the centre of the image 

frame. Assuming a half circle (𝜋[rad]) divided into 𝑁 

equiangles, the rotated images by the angle 𝜃𝑖 = 𝜋𝑖 𝑁⁄  

with 𝑖 is the number of rotations in range [0, 1, … , 𝑁 −
1] is denoted as, 𝐼𝑖(𝑥, 𝑦) which is then subject to 

opening and closing operation. The opening operation 

of a rotated image with a structuring element, 𝐵 are the 

represented as 𝛾𝐵(𝐼𝑖(𝑥, 𝑦)). The structuring element 𝐵 

is chosen to be larger than the noise width in an image. 

These opened images are then rotated 𝑖 times in 

counter-clockwise denoted as 𝑅𝑖(𝑥, 𝑦). Finally, all the 

rotated images, 𝑅𝑖(𝑥, 𝑦) are then unified and images 

having the maximum intensity for the same pixel are 

considered in generating the entire image. The unified 

images are subject to opening by top-hat RMP with a 

structuring element, 𝐵. These unified opened images 

are denoted as 𝑂𝐵
′ (𝑥, 𝑦).  

 𝑂𝐵
′ (𝑥, 𝑦) = max

𝑖∈(0,1,…𝑁−1)
𝑅𝑖(𝑥, 𝑦). (15) 

Then the top hat transformation based on RMP is 

defined by subtracting the unified opened images 

𝑂𝐵
′ (𝑥, 𝑦) from original noise filtered image 𝐼𝑓(𝑥, 𝑦) 

which is given as:  

 𝑇𝐻𝐵(𝑥, 𝑦) = 𝐼𝑓(𝑥, 𝑦) − 𝑂𝐵
′ (𝑥, 𝑦). (16) 

The last step involves binarizing the top hat trans-

formed image, 𝑇𝐻𝐵(𝐼(𝑥, 𝑦)) using a thresholding me-

thod in equation (17). 

 𝐻(𝑥, 𝑦) = {
1, 𝑇𝐻𝐵(𝑥, 𝑦) > 0
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. (17) 

Then by computing the intensity-weighted centroid 

of the binarized image, the spots positions can be esti-

mated. 

The free parameters are: 

 Length of structuring element, SE 

Spot enhancing filter (SE) 

The spot enhancing filter (SE) method was proposed 

by (Sage, 2005) for detecting spots in microscopy 

images. The algorithm enhances spots in images while 

reducing background structures and suppressing noise. 

The initial step convolves the original image, 𝐼(𝑥, 𝑦) 
with a Laplacian-of-Gaussian (LoG) filter, 

 𝐼𝑓(𝑥, 𝑦) = 𝐿𝑜𝐺(𝑥, 𝑦, 𝜎) ∗ 𝐼(𝑥, 𝑦). (18) 

The kernel is defined as, 

 𝐿𝑜𝐺(𝑥, 𝑦, 𝜎) =
𝑥2+𝑦2−2𝜎2

2𝜋𝜎2
𝑒
−
(𝑥2+𝑦2)

2𝜎2 , (19) 

where, 𝜎, is the Gaussian kernel width chosen based 

on the size of the particles. The second step of the 

algorithm consists of intensity thresholding and a con-

nected-component labelling algorithm. The intensity 

threshold, 𝑇, for the filtered image is computed by 

incorporating the mean, 𝜇𝑖𝑛𝑡 of the filtered image, user 

defined factor, 𝑘 times the standard deviation, 𝜎𝑖𝑛𝑡 of 

the filtered image intensities.  

 𝑇 = 𝜇𝑖𝑛𝑡 + 𝑘𝜎𝑖𝑛𝑡. (20) 

After thresholding, a connected component label-

ling is performed to identify spots and each spot loca-

tion is determined by computing the intensity-weigh-

ted centre of mass.  

The free parameters are: 

 LoG threshold 

 Gaussian kernel width, 𝜎 

Wavelet Multiscale Product (WMP) 

A wavelet multiscale product-based spot detection 

method was presented by (Olivo-Marin, 2002) for the 

detection of spots in microscopy images. The method 

is based on the assumption that spots will be present at 

each scale of wavelet decomposition and thus will 

appear in the multiscale product. The method first 

applies an á trous wavelet transform on the original 

image, 𝐼(𝑥, 𝑦) to filter out unwanted signals resulting 

in a smoothed image, 𝐼𝑖(𝑥, 𝑦). The so-called wavelet 

plane, 𝑊 at level 𝑖 is then computed by subtracting the 

smoothed image at level of previous level, 𝑖 − 1, 

defined as, 

 𝑊𝑖(𝑥, 𝑦) = 𝐼𝑖−1(𝑥, 𝑦) − 𝐼𝑖(𝑥, 𝑦), (21) 

where 

 𝐼𝐼(𝑥, 𝑦) = 𝐼𝑖−1 ∗ ℎ        1 ≤ 𝑖 ≤ 𝐽. (22) 

With ℎ being the smoothing kernel and 𝐼0, the 

original image, and 𝐽 the number of scales used. Then 

a thresholding is performed to reduce the number of 

noisy wavelet coefficient from each scale. At, each 

scale, 𝑊𝑖, the wavelet transform results correspond to 

the image matching that scale. This may include both 

real spots and unwanted noise and background structu-

res. Then the information contributed by each of the 

scales, 𝑊𝑖, is combined as, 

 𝑃𝐽(𝑥, 𝑦) = ∏ 𝑊𝑖(𝑥, 𝑦)
𝐽
𝑖=1 . (23) 
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The multiscale product 𝑃𝐽, provides significant 

values where an important features is present and low 

values for all other feature. Then, 𝑃𝐽, is binarized using 

a threshold, to yield in connected components. 

The free parameter for the method is, 

 Wavelet scales 

Jaiswal  

Jaiswal (2015) proposed a detection method similar to 

(Sage, 2005) termed ‘multi-scale spot enhancing filter’ 

(MSSEF). The proposed method was used for the 

detection of avian leukosis virus particles in confocal 

fluorescence microscopy images. The approach works 

by, first multiplying the input image, 𝐼(𝑥, 𝑦) with a 

binary mask 𝑏(𝑥, 𝑦, 𝜎(𝑠−1)) obtained at scale 𝜎(𝑠−1) 
then convolving with a Laplacian of Gaussian filter 

(LoG). The mask 𝑏(𝑥, 𝑦, 𝜎(𝑠−1)) is obtained as a result 

of thresholding the image, 𝐼𝑓(𝑥, 𝑦, 𝜎
(𝑠)) with a thres-

hold 𝑇(𝑠−1). At each scale, the threshold 𝑇(𝑠−1) is 

calculated for the image as, 

 𝑇(𝑠−1) = 𝜇𝑖𝑛𝑡
(𝑠−1)

+ 𝑘𝜎𝑖𝑛𝑡
(𝑠−1)

, (24) 

where 𝑘 is constant, defined by the user. 

The filtered image 𝐼𝑓(𝑥, 𝑦, 𝜎
(𝑠)) at scale 𝜎(𝑠) is as 

a result of 𝑠 recursive convolution steps of the original 

image, 𝐼(𝑥, 𝑦) with a LoG filter, 𝐿𝑜𝐺(𝑥, 𝑦, 𝜎(𝑠−1)) 
denoted as, 

𝐼𝑓(𝑥, 𝑦, 𝜎
(𝑠)) =  𝐿𝑜𝐺(𝑥, 𝑦, 𝜎(𝑠)) ∗ 

 ∗ (𝑏(𝑥, 𝑦, 𝜎(𝑠−1))𝐼(𝑥, 𝑦)). (25) 

The result of multiplying the image with a binary 

mask sets the noisy background to zero while the fore-

ground intensity pixels remain unchanged. Spots are 

identified by applying a connected components label-

ling and the positions are estimated as an inten-sity-

weighted centre of mass. 

The free parameter for the method is, 

 Constant 𝑘 

 Gaussian kernel width, 𝜎 

Basset  

Another method based on optimal scale selection was 

proposed by (Basset, 2015) for the detection of 

vesicles in microscopy imaging. The method was 

named ‘adaptive thresholding of Laplacian of Gaussian 

images with auto selected scale (ATLAS)’. The algo-

rithm consists of selecting an optimal scale that cor-

responds to the spot size in the image. The method 

mainly consists of two steps, optimal scale selection 

and adaptive segmentation. 

The scale selection step is interested in determi-

ning the representative scale of an image which is 

shared by most of the spots. The scale-space represen-

tation is based on the framework proposed by 

Lindeberg (1998), which is based on using Gaussian 

kernels to build a representation scales. The scale-

space representation, {𝑆𝑡} of an image 𝐼 is defined as, 

 ∀𝑡 ∈ ℝ,     𝑆𝑡 = 𝐺𝑡 ∗ 𝐼, (26) 

where 𝐺𝑡 is the 2D Gaussian convolution kernel of 

variance 𝑡 and, ∗ is the convolution parameter. Then a 

scale normalised Laplacian operator is applied in order 

to supress noise and enhance the spots. The isotropic 

Laplacian kernel, ∇2 for 2D images is defined as, 

 ∇2=

(

 

1
6⁄

2
3⁄

1
6⁄

2
3⁄

−10
3⁄

2
3⁄

1
6⁄

2
3⁄

1
6⁄ )

 . (27) 

To reduce the computation, the Gaussian and 

Laplacian filters are combined using a single norma-

lised LoG kernel ℎ𝑡, ∋ 𝑡∇2𝑆𝑡 = ℎ𝑡 ∗ 𝐼. Then a multi-

scale LoG is defined as, 

 ∀𝑡 ∈ ℝ,                 𝐻𝑡 = ℎ𝑡 ∗ 𝐼. (28) 

The LoG filter gives negatives values in the pre-

sence of bright spots, the scale is selected based on 

negative extremes of the LoG filter, referred to as 

negative blobs. These blobs are mostly located in two 

specific areas: 

 the centre of Gaussian spots corresponding to the 

vesicles; 

 at the bright pixels which are are caused by noise.  

These blobs are then used to select a LoG scale, a 

scale in which the number of blobs is the highest is 

considered as the best scale. The scale selection criteria 

proposed for the detection of spots is denoted as, 

 𝐶𝑅: 𝑠
∗ = argmax

𝑠𝜖𝑆
(𝜌𝑠(𝐼) − 𝜌𝑠(𝜀)), (29) 

the parameters, 𝜌𝑠(𝐼) and 𝜌𝑠(𝜀) are the blob densities 

in 𝐼 and additive Gaussian noise 𝜀 respectively at scale 

𝑠. The selected scale is the one with the maximum 

number of blobs at which the dissimilarity between 

𝜌𝑠(𝐼) and 𝜌𝑠(𝜀) is highest. 

After the scale is selected, the second step is the 

segmentation step, which is based on the local thresh-

olding of the Laplacian of Gaussian (LoG) of the in-

tensity image. The local threshold is calculated based 
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on the p-value, 𝑃 at every point, p from the local image 

statistics,  

 𝑇(𝑝) = Φ−1(𝑃) × 𝜎2(𝑝) + 𝜇(𝑝), (30) 

where the parameter, Φ denotes the Gaussian distri-

bution function. Thus, thresholding the LoG-filtered 

image result in connected components. Then, spot 

locations are estimated by computing the centroid of 

each of the connected component resulting in a set of 

locations (r). Then a spot of a ground truth is correctly 

detected if an only if, its nearest neighbour in the set 

of detected centroids is closer than 4 pixels away and 

also the nearest neighbour is in the ground truth set of 

locations. 

The free parameters for the method are, 

 The probability of false alarm, P 

 Standard deviation of the Gaussian window 

C-Craft 

The method of conditional random fields for protein 

transport carrier’s segmentation (C-CRAFT) was 

proposed by (Pécot, 2015) to estimate the back-ground 

and segment spots in 2D+t and 3D+t fluores-cence 

microscopy images. The detection of spots and the 

estimation of background are constructed as a global 

energy minimization problem in the conditional 

random fields framework. A patch-based image repre-

sentation is used to detect special irregularities in the 

image and an iterative scheme based on graph algo-

rithm is proposed for energy minimization. The first 

step of the algorithm applies a variance stabilizing 

technique (Boulanger, 2010) to convert the Poisson-

Gaussian noise to white noise. Suppose 𝑦𝑘 = {𝑦𝑘
𝑖 }
𝑖∈𝑆

 

be a given data from the input time sequence with 𝑦𝑘
𝑖  

being the grey value at site 𝑖 and time 𝑘 and let 𝑥𝑘 =

{𝑥𝑘
𝑖 }
𝑖∈𝑆

 be the binary map which indicates if a spot is 

present (𝑥𝑘
𝑖 = 1) or not (𝑥𝑘

𝑖 = −1) in the image at 

time, 𝑘.  

The global an energy 𝐸(𝑥𝑘 , 𝑏𝑘 , 𝑦𝑘) is then given 

as, 

𝐸(𝑥𝑘 , 𝑏𝑘 , 𝑦𝑘) = ∑ (𝐻𝐷(𝑥𝑘
𝑖 , 𝑦𝑘) +𝑖∈𝑆

𝛽𝐻𝐵(𝑏𝑘
𝑖 , 𝑥𝑘

𝑖 , 𝑦𝑘
𝑖 )) + 𝛼 ∑ 𝐻𝑉(𝑥𝑘

𝑖 , 𝑥𝑘
𝑗
, �̂�𝑘−1
𝑗
)<𝑖,𝑗> . (31) 

The parameter, 𝐻𝐷(𝑥𝑘
𝑖 , 𝑦𝑘) is a discriminative 

potential for spot detection, 𝐻𝐵(𝑏𝑘
𝑖 , 𝑥𝑘

𝑖 , 𝑦𝑘
𝑖 ) a potential 

used for determining the difference of 𝑦𝑘
𝑖  and back-

ground 𝑏𝑘
𝑖 , 𝐻𝑉(𝑥𝑘

𝑖 , 𝑥𝑘
𝑗
, �̂�𝑘−1
𝑗
) is the Ising model 

(Tanaka, 2003) and < 𝑖, 𝑗 > denotes a sets of cliques. 

The values 𝛽 and 𝛼 are positive constants used to 

balance the energy terms. The energy function 

𝐸(𝑥𝑘 , 𝑏𝑘 , 𝑦𝑘) is minimized based on min-cut/max-

flow algorithm (Boykov and Kolmogorov, 2004).  

The second step of the algorithm is based on patch 

approach. The idea in this step is to combine Markov 

random fields with the patch-based approach and per-

form a pairwise comparison of n-dimensional patches. 

This involves the following measurement 

𝑦𝑘
𝑖 = ∑

‖𝑃𝑘(𝑖)−𝑃𝑘(𝑗)‖
2

4𝜎2
− (

𝑛

2
− 1) 𝑙𝑜𝑔(‖𝑃𝑘(𝑖) −𝑟∈𝑁𝑖

− 𝑃𝑘(𝑗)‖), (32) 

where 𝑃𝑘(𝑖) is the patch of √𝑛 × √𝑛 centred at site 𝑖 
at time 𝑘 and 𝜎2 is the noise variance. 𝑁𝑖. This mea-

sure is used to distinguish between the background and 

vesicle class and it takes high values at the vesicles 

locations and small ones in the background. Then a 

threshold, 𝑇𝑘 is defined based on Chebyshev inequa-

lity (Jiajun, 2016) to discriminate between the two 

classes. Thus after thresholding, a connected com-

ponent is performed to identify spots in a binary image, 

and then their locations are estimated as mass centres.  

The free parameters for the method are, 

 The p-value for hypothesis 

 Spatial regularization weight 

 𝛽 and 𝛼 

Worz 

Worz (2010) introduced an automatic approach 

method for the quantification and localization of telo-

meres and promyelocytic leukemia (PML) bodies. The 

approach is divided into two steps. The initial step is a 

3D spot detection step. In this step, a variety of 3D 

filtering and smoothing methods are performed to an 

input image to get coarse spots. Then, a 3D Gaussian 

filter with  𝜎𝑓 proportional to the size of the desired 

spot width is applied to the image. After smoothing the 

image, the image intensities are clipped to suppress the 

background based on the threshold value, 𝑡𝑐𝑙𝑖𝑝 = 𝜇 +

𝑐 × 𝜎𝜇, in which 𝜇 and 𝜎𝜇 are the mean and standard 

deviation of the histogram respectively and c a user 

defined parameter. After, this the local maxima are 

identified in the image. The second step is spot quanti-

fication.  In this step, each of the detected maxima is 

fitted to a 3D Gaussian model 𝑔𝑚 using a least square 

model by minimizing,  

 ∑ (𝑔𝑚(𝑥, 𝑝) − 𝑔(𝑥))
2

𝑥∈𝑅𝑂𝐼 , (33) 

with, 𝑝, representing the vector containing the spot 

model parameters. The minimization of the objective 

function is based on the method of Marquardt (1963).  
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Spot positions can be obtained based on sub-voxel 

estimates. 

The free parameters of the method are the follo-

wing 

 Gaussian kernel width, 𝜎 

 Threshold coefficient, c 

 Parameter ranges for spot model 

Feature point detection (FPD) 

The feature point detection method was developed by 

Sbalzarini and Koumoutsakos(2005) for the detection 

of spots in microscopy images. The detection of spots 

in this algorithm is based on locating local intensity 

maxima followed by a weighted intensity centroid 

calculation. The method is made of four steps, the first 

step, image restoration, suppresses the imperfections 

in the input image, 𝐼(𝑥, 𝑦) by convolving it with a 

Gaussian kernel as described in Eq. 7. 

The second step, estimating particle location. This 

step locates local intensity maxima in the filtered 

image, 𝐼𝑓(𝑥, 𝑦). A pixel is considered to be local 

maxima if no other pixels within a radius 𝑤 around it 

is brighter, and its intensity is in the upper p-percentile. 

These local intensity maxima are identified using gray-

scale dilation followed by selecting all pixels that have 

the same values before and after dilation. The Third 

and fourth step refine particle location and perform non-

particle discrimination. The detected intensity maxima 

are filtered to reduce the number false positives. These 

false positives are identified as maxima with intensity 

moments of order 0 and 2 that are significantly diffe-

rent from all other maxima. Clustering is performed on 

all points in the intensity moment space and those with 

density smaller than a given threshold are discarded. 

Then for every retained point, its position is estimated 

as the intensity-weighted centroid within the radius w 

The free parameters are 

 Gaussian kernel width, 𝜎 

 P-percentile: threshold for intensity moment space 

 Cut-off; size of the structuring element for dilation 

Wilson  

Wilson (2016) presented a method for the detec-tion 

of EGFP-labelled large dense-cored vesicles (LDCVs) 

in rat phaeochromocytoma (P12) cells in images 

obtained via fluorescence microscopy. The presented 

method is based on the concept of particle probability 

image (PPI) (Yang, 2010) which computes useful 

features of spots in a statistical man-ner. The method 

consists of two stages: particle enhan-cing filter and 

particle segmentation. The first step, particle 

enhancing filter is constructed in three stages. (1) The 

initial step constructs a PP image of the original 

greyscale image. The construction of PP image uses 

Haar-like features which is computed for each pixel, 

𝑝 = (𝑥, 𝑦) in the original greyscale image at a diffe-

rent scale, 𝑠 to suppress the amount of background 

noise in a greyscale image. At a given scale, 𝑠, the 

Haar-like features, 𝐻𝑗
𝑠 for (𝑗 = 1,2,3) are defined by: 

 𝐻𝑗(𝑝) = max
𝑠
(𝐻𝑗

𝑠(𝑝)). (34) 

Following the HLF computation, these HLFs are 

linearly combined as: 

 𝐻(𝑝) = ∑ 𝑐𝑗𝐻𝑗
3
𝑗=1 , (35) 

where, 𝑐𝑗 is the normalised weights for each of the 

Haar-like features, then a weak threshold, 𝐻(𝑝) ≥ 𝜆, 

is introduced on the Haar-like features in order to 

classify each of the pixels, 𝑝  to either (particle or 

background). A particle probability image (PPI) is 

then defined based on the ratio of the number of 

spatially connected particle pixels to the total number 

of pixels in a small region of a particle size. 

 𝑃(𝑝) = (∆𝑁 𝑁𝑡𝑜𝑡𝑎𝑙
⁄ )

𝐴𝑝

, (36) 

where, 𝑁𝑡𝑜𝑡𝑎𝑙 is the number of pixels within a given 

area 𝐴𝑝 centred at 𝑝 and ∆𝑁 is the number of pixels in 

𝐴𝑝 that satisfies 𝐻(𝑝).  

The second stage of the method is the particle 

segmentation which is implemented based on the 

estimation of the particle existing regions (PERs) of 

particles and their corresponding markers in the refined 

PP image. The marker-controlled watershed method is 

applied to accurately segment the particle regions from 

the original grayscale image. The estimation of PERs 

allows the extraction of particle positions at a subpixel 

level and accurate estimation of particle topologies 

such as size and intensity. The spots are then localized 

by computing the intensity-weighted centre of mass of 

the particle existing regions.  

The algorithm free parameters are 

 𝜆, the threshold to classify pixels into two groups 

 𝑠 the scale of the haar 

Supervised methods 

Supervised methods recently received much attention 

in the field of microscopy image analysis for the 

detection of spots. The main steps involved in these 

methods as illustrated in Fig. 2 are feature extraction 
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and classifier training and in some cases a feature 

fusion. These steps play an important role in the 

performance of supervised spot-detection methods.   

Feature extraction: this step consists of selecting 

features of interest from a given raw image. These dis-

criminative features are used to build a high dimen-

sional feature space. This step is critical to cons-tructing 

high-performance spot detection methods. There exists 

a variety of methods to extract features from a given 

dataset. Examples include bag-of-words and haar-like 

features. Haar-like features were introduced by Viola 

and Jones (Viola & Jones, 2001) for the detection of 

faces and now introduced to the field of spot detection 

in microscopy images. Once features are extracted, a 

classifier can be trained with an idea of minimizing the 

misclassification error on the training dataset.  

Classifier training phase: The training involves two 

main stages. The first part is the learning stage, in which 

the classifier adapts to the expected images, followed 

by the test stage, applying the trained classifier to the 

actual data.  In the training phase, the classifier is given 

a set, tau, of 𝜏 training samples with 𝑚 labelled obser-

vations defined as, 

 𝜏 = (𝑎𝑖 , 𝑏𝑖),       𝑖 = 1,2, … . . 𝑚,     𝑎𝑖 ∈ ℝ
𝑑  . (37) 

Each training sample consists of d-dimensional 

input variable  𝑎𝑖 which is referred to as input features 

and 𝑏𝑖 is the output which can be referred to as a class 

label. The set needs to be constructed carefully so that 

it contains both positive and negative examples covering 

the whole range of the expected inputs. The main idea 

of the training process is based on learning the data and 

construct a prediction model ℎ̂ of 𝑏𝑖 from the training 

data set, ℎ̂(𝑎𝑖) = 𝑏𝑖 + 𝜀, where 𝜀 is the random error 

value. 

Testing stage, in the testing step, the constructed 

model in the training phase is used to predict class 

label 𝑏𝑛𝑒𝑤 for a new sample 𝑎𝑛𝑒𝑤.  

 𝑏𝑛𝑒𝑤 = ℎ̂(𝑎𝑛𝑒𝑤). (38) 

The problem which arises with supervise-detection 

algorithms is overtraining. Discussion about this prob-

lem and how to avoid can be found in (Kleinberg, 

1996). The frequently used classifiers are support 

vector machine (SVM), AdaBoost, nearest neighbour 

and decision trees. 

The support vector machine (SVM) is the well-

known and most popular method among the machine 

learning algorithms for solving classification problems. 

The main idea of SVM is to transform the training data 

into a higher dimensional feature space and search for 

an optimal decision boundary.  

AdaBoost is a widely-used, supervise-method with 

the idea of combining many weak classifiers to form a 

strong classifier based on adjusting the weights of 

training samples. Given the training data 𝜏, the weights 

are initialized as, 𝑤𝑖 = 1 𝑚⁄  for all the training 

examples, then a weak classifier ℎ𝑖 is trained based on 

weighted least square fitting. Then the weights 𝑤𝑖 are 

updated as 𝑤𝑖 = 𝑤𝑖 × 𝑒𝑥𝑝(−𝑏𝑖ℎ𝑖(𝑎𝑖)) 𝐿⁄  with 𝐿 being 

the normalization factor.The strong classifier 𝐻 is 

calculated as a linear combination of all weak classi-

fiers, defined as, 

 𝐻 = ∑ 𝑤𝑖ℎ𝑖
𝑗
𝑖=1 . (39) 

Jiang  

Jiang (2007) presented an approach for the detection 

of spots in microscopy images based on the idea 

proposed by Viola and Jones (2001). The pro-posed 

method is based on using of Haar-like features and 

AdaBoost to detect the spot positions in the images, 

where a classifier is trained to identify spots in image 

patches based on haar like features, and features which 

give the best detection results are then itera-tively 

selected with the boosting algorithm. The num-ber of 

selected features is fixed by the user. Once the 

classifier is trained, the detection process is done by 

sliding a window of a given size through an image, and 

these windows are then passed into a trained classifier 

to check if that region contains a spot or not, using a 

user-defined threshold. Windows which contain spots 

are subject to further processing to compute additional 

statistical properties such as, centroid, contrast, angular 

moment and etc. 

The output of AdaBoost is a single strong classifier 

which is a linear combination of the set of weak clas-

sifiers. 

The free parameters for the method are: 

 Feature set 

 User threshold 

Ram 

The proposed method by Ram (2012) is con-ducted in 

two steps: spot segmentation and detection. The seg-

mentation step is based on the unsupervised approa-

ches and the detection utilizes supervised methods. 

The segmentation consists of applying edge-enhan-

cing diffusion (Gerig, 1992) to sharpen the spot edges 

while reducing the effect of the noise, then a 3D 

morphological top-hat filter is utilized to enhance the 

quality of spots, with the size of the structuring ele-

ment (SE) selected according to the size of the ex-

pected spot. Then, the top-hat filtered image is thresh-
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olded using unimodal thresholding to obtain the spot 

locations, and the candidate spots are segmented using 

a region growing. 

The 2nd stage of the method then performs the 

classification of the segmented spot candidates using 

Bayesian classifier which labels the candidates spots 

as actual spots, or false detections. The spot features 

used to train the classifier include the average intensity 

and its standard deviation, volume, shape, convexity, 

contrast, and the intensity gradient in the interior of the 

object and at its edge. 

The free parameters of the unsupervised stage are 

the following: 

 Edge enhancing diffusion parameters (k and a) 

 Number of diffusion iterations 

 Radius of the structuring element for the top-hat 

 Threshold adjustment 

 Bayesian training 

Fisher discriminant analysis (FDA) 

The Fisher Discriminant Analysis (FDA) (McLachlan, 

2004; Smal, 2010) method is a pattern recognition 

technique that aims at obtaining a combination of va-

riables that separate the two classes. The idea of FDA 

is to find a projection to a line such that samples of 

different classes are well separated. In this case of spot 

detection, the idea is to find a projection in which the 

separation between spots and background is maxi-

mized considering the mean and standard deviation of 

each class. The mean and the covariance are calculated 

using the features obtained from the training samples. 

The computation of FDA relies on the maximization 

of 𝐽(𝑤), 

 𝐽(𝑤) =
(𝑤𝑇(𝑚1−𝑚2))

2

𝑤𝑇(𝑠1+𝑠2)𝑤
, (40) 

where 𝑚 is the mean, 𝑠 the standard deviation between 

two classes (spot and background) and 𝑇 is the trans-

pose. The indexes 1,2 represents the two classes. The 

main idea is to find 𝑤, that maximizes 𝐽(𝑤), then this 

will guarantee that the classes are well separable. The 

solution for the scale factor, 𝑤 which maximizes 𝐽(𝑤) 
is then defined as, 

 𝑤 = (𝑠1 + 𝑠2)
−1(𝑚1 −𝑚2). (41) 

The detection process involves applying a sliding 

window onto an image to extract patches of a given size. 

Then, these patches are passed onto an FDA classifier to 

check if they contain a spot or not. A user threshold is 

defined to separate between a spot or nonspot. Patches 

containing a spot are subject to further processing.  

The free parameters for the method are: 

 Patch size 

 User threshold 

Logistic regression with Markov random 
field (LR-MRF) 

The method of logistic regression with Markov ran-

dom field (LR-MRF) was proposed by Ruusuvuori 

(2012) based on selecting significant features from a 

set of candidate features. The approach was used for 

the detection of subcellular structures in microscopy 

images. The proposed methodology consists of three 

steps. The first step of the algorithm consists of creating 

a pool of candidate feature sets using unsupervised 

detection methods, wavelet decomposition, morpholo-

gical top-hat, the edge enhancing and Gaussian low-

pass filter. Secondly, these features are weighted by 

the logistic regression in which useful features are 

preserved and non-informative ones are excluded in 

the model. In this step, the logistic regression is 

combined with a least shrinkage and selection operator 

(LASSO) (Tibshirani, 1994). The LASSO method is 

based on the least square method but introduces a 

penalty factor, the 𝑙1 − norm which penalizes the error 

function. Thus a logistic classifier with LASSO model 

is designed as, 

 𝑝(𝑐𝑖|𝑥𝑖) =
1
1 + 𝑒𝑥𝑝(𝛽0 + 𝛽

𝑇𝑥𝑖)
⁄ , (42) 

where 𝑥𝑖, is the feature vector and the model para-

meters 𝛽0 and 𝛽 = (𝛽1, 𝛽2, … 𝛽𝑁)
𝑇 are estimated by 

maximizing the log-likelihood  

 ∑ log 𝑝(𝑐𝑖|𝑥𝑖) + ∑ log(1 − 𝑝(𝑐𝑖|𝑥𝑖))𝑥𝑖∈𝐵𝑥𝑖∈𝐹 −

𝜆‖𝛽‖1, (43) 

using the LASSO, and 𝑝(𝑐𝑖|𝑥𝑖), the probability of 

finding pixel label 𝑐𝑖 belonging to the foreground 

given feature vector, 𝑥𝑖.where F and B are foreground 

and background pixels of training set and 𝜆 is the 

regularization parameter selected by cross-validation. 

Then an Ising model (Tanaka, 2003) is used to 

extract the spots in an image.  

The free parameters for the model are: 

 Regularization parameter, 𝜆 

 Feature sets 

SUMMARY 

The above section studied the state-of-the-art methods 

in microscopy images, and each method was described 

in detail, and its tunable parameters were given. The 

discussed methods were categorized into two types, 
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unsupervised and supervised.  The supervised methods 

were defined as those that require training, and the 

unsupervised methods do not require training. The 

strength of the unsupervised methods is the flexibility 

involved in incorporation of shape, geometry and no 

training needed makes the unsupervised methods a 

multi-source capable. However, the solution to the full 

automation of segmentation process is still missing. 

The expert knowledge for how to define the classifi-

cation rules is still subjective. In supervised methods, 

the spot model can be established automatically via 

machine learning technique. The detection system is 

scalable and compatible, have high detection accuracy. 

The main limitation of the supervised methods, they 

require a lot of training samples of spots and non-spots 

to teach classifiers; as a result, the detection accuracy 

depends on the training samples used to train the 

classifier. In biological imaging and spot detection, the 

datasets used in the testing of all referenced methods 

remain limited in terms of context and challenges. Real 

data are far more complex than training images, 

especially the SNR may be too low in real images, and 

the spots of interests vary in size and intensity. Addi-

tionally, more realistic and challenging datasets with 

ground truth to quantitatively evaluate the refe-renced 

methods are under study (Mabaso, 2016).  

Table 1. Number of main parameters to be set by the 

user for the reviewed methods. The aforementio-ned 

methods contain one or more parameter related to spot 

size need to be tuned by the user. Thus setting this 

parameter too small will result in over detection of 

spots due to noise, and if the value is too high, the true 

spots will be smoothed out. These parameters offer 

ways to adjust a particular method to your specific need. 

These methods provide an easy-to-use tool for biologists 

to interpret microscopy images effectively. The number 

of tunable parameters plays a crucial role in making an 

easy-to-use image analysis tool for biologists. The 

greater the number of parameters which need to be tuned 

becomes a painstaking process for the end user, as 

results, fewer tunable parameters are re-commended. 

 

Table 1. Overview of the spot detection methods with the approach used and number of user-set parameters. 

Method Approach Number of 

user tunable 

parameters 

  UNSUPERVISED METHODS  

Kozubek (Kozubek, 1999) Adaptive thresholding. 4 

Netten (Netten, 1997) Morphological top-hat transform with adaptive thresholding. 2 

Seed growing (Gue, 2005) Morphological top-hat transform with adaptive thresholding. 4 

Raj (Raj, 2008) Multiple thresholding of a Laplacian of Gaussian filtered image. 1 

EMax (Matula, 2010) Morphological H-maxima transform. 3 

HDome (Vincent, 1993; Smal, 

2010) 

Morphological HDome transform with the mean-shift algorithm. 6 

Rezatofighi (Rezatofighi, 2012) HDome transform with automatic threshold selection. 3 

Kimori (Kimori, 2010) Morphology top-hat with rotational morphological processing. 1 

SEF (Sage, 2005) Convolution of Laplacian of Gaussian filter followed by intensity 

thresholding. 

2 

WMP (Olivo-Marin, 2002) Multiscale product of wavelet coefficients. 1 

Jaiswal (Jaiswal, 2015) Recursive convolution of LoG kernel applied to masked image 2 

Basset (Basset, 2015) Adaptive thresholding. 2 

C-Craft (Pécot, 2015) Conditional random fields and patch-based image representation. 4 

Worz (Worz, 2010) 3D Gaussian intensity model and 3D least-squares fitting. 3 

FPD (Sbalzarini & Koumoutsakos, 

2005) 

Percentile detection and non-particle discrimination. 3 

Wilson (Wilson, 2016) Particle probability image using Haar-like features and marker-

controlled watershed. 

2 

 SUPERVISED METHODS  

Jiang (Jiang, 2007) Haar-like features and Adaboosting. 2 

Ram (Ram, 2012) Top-hat transform with adaptive threshold and Bayesian classifier. 5 

FDA (McLachlan, 2004; Smal, 

2010) 

A spot enhancing filter is learned in the training data with a threshold 

value for detection. The filter coefficients are computed from intra- and 

inter-class mean and variance in patches. 

2 

LR-MRF (Ruusuvuori, 2012) A feature set is built using a number of spot detection methods then LR-

MRF method is applied to select significant features. 

2 



MABASO M ET AL: Spot detection methods review 

187 

EVALUATION METRICS AND 
DATASETS  

Over the past years, efforts have been made in the 

development of various detection methods in micro-

scopy imaging. In order to compare the results of the 

existing methods, it is critical to introduce some freely 

available datasets and evaluation metrics.  

DATASETS 

There are various datasets and tools publicly available 

which are successfully used in testing the performance 

of spot detection methods. Due to the lack of ground 

truth in real fluorescence microscopy images, the eva-

luation or testing the performance of any spot detector 

relies on the use of synthetic images. Therefore, this 

study will focus on the synthetic datasets. 

SIMCEP (Lehmussola, 2007; Ruusuvuori, 2008) 

is a benchmark dataset of synthetic cell population 

images with ground truth consisting of cell populations; 

clustering with increasing probability, cells with nuclei, 

cytoplasm and subcellular objects, and cells from two 

populations. The SIMCEP simu-lator can be tuned to 

simulate images for a specific research problem.  

Synthetic data generator (Smal, 2009). This tool is 

used to generate different types of synthetic images 

with round and elongated spots with various back-

grounds. The tool was used in a number of studies but 

it does not create a time sequence images, and as a 

result, the tool is applicable for the creation of syn-

thetic images for the evaluation of spot detection 

methods.  

Another tool which offers more flexibility termed 

‘particle tracking benchmark generator’ was proposed 

by Chenouard (2016). 

Particle tracking benchmark generator (Chenouard, 

2016) provides a powerful tool for the creation of 

synthetic image sequences, for both 2D+t and 3D+t. 

The tool is designed to create synthetic images for 

testing both detection and tracking algorithms.  

Realistic synthetic datasets (Mabaso, 2016) frame-

work is based on the tool proposed by Chenouard. The 

addition made into this tool is the option of using the 

real background in the creation of synthetic image 

sequences. As a result, the datasets created by this 

framework offer an excellent resource for testing the 

performance of various spot detection algorithms.  

EVALUATION METRICS  

The well-known measures for evaluating various spot 

detection methods in microscopy images are F-mea-

sure, precision and recall. Parameters involved in the 

computations include; TP, FP and FN which denote 

the number of true positives (number of detected spots 

that corresponds to the ground-truth), number of false 

positives (number of detected spots which do not cor-

respond to the ground-truth) and number of false 

negatives (number of missed ground-truth spots), res-

pectively. A detection result is labelled as TP if the 

overlap region, 𝑂𝑟 between the detection and ground-

truth exceeds a predefined threshold T, 

 𝑂𝑟 =
𝑎𝑟𝑒𝑎(𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛⋂𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ)

𝑎𝑟𝑒𝑎(𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛⋃𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ)
> 𝑇. (44) 

Otherwise, the detection will be classified as a 

false positive. 

Precision measures the fraction of correctly detec-

ted spots among all ground truth spots while recall 

measures the fraction of correctly detected spots. The 

precision and recall are computed as, 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑃)⁄ , (45) 

 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑁)⁄ . (46) 

The F-measure combines both precision and recall 

into a single measure weighted by the factor, 𝛼2 

 𝐹𝛼 = (1 + 𝛼
2) ×

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

(𝛼2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)+𝑅𝑒𝑐𝑎𝑙𝑙
. (47) 

The parameter, 𝛼2 is set depending on the impor-

tance of precision or recall; thus if 𝛼2 < 1 then 

precision is of importance and vice versa. If neither of 

precision or recall is preferred then 𝛼2 = 1. The above 

three measures have been successfully used in the 

comparison of various spot detection methods (Smal, 

2010). 

CONCLUSIONS 

Detection of spots in microscopy images has always 

been a fundamental but a challenging issue in the field 

of automated image analysis. Over the past years, 

many efforts have been made to develop various auto-

mated spot detection method.  In this work, a review 

of existing detection methods has been presented. The 

reviewed methods included both supervised and unsu-

pervised detection methods. We categorized the detec-

tion methods into two groups, unsupervised and super-

vised based detection methods and reviewed them 

exhaustively. We also summarized publicly available 

data sets, tools, and three standard evaluation metrics.  

Even though a number of automated methods have 
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been developed, researchers in the field of bio-image 

analysis are still faced with many challenges which 

need improving for future methods. 

 Dealing with the effect of noise on data: 

 Accurate spot detection: the images obtained via 

fluorescence microscopy imaging may be blurred 

and noisy which makes it difficult to analyse them. 

The presence of noise in these images limits the per-

formance of any automated spot detection methods.  

This review has highlighted the increasing impor-

tance of automated based spot detection algorithms to 

overcome the challenges of manual detection.  The aim 

of this study was not to determine the overall perfor-

mance of the methods but rather to present a compre-

hensive catalogue of spot detection methods in micro-

scopy images. All the reviewed methods contain para-

meters that need to be tuned for better performance. 

The fewer the parameters, the simpler the method is to 

implement. However, the choice of the method should 

be based on the type of input images, and different 

methods need to be tested on the same dataset to eva-

luate which method performs best. Recent advances in 

machine learning namely, deep learning, has showed 

remarkable results within the task of image classifi-

cation. As part of future work we propose the use of 

convolutional neural network (convnet) (LeCun, et al., 

2015) for the task of spot detection in microscopy 

images. Preliminary results using conv-nets for spot 

detection showed good performance but still requires 

some improvements.  
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